Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
基本信息
- 批准号:10579947
- 负责人:
- 金额:$ 66.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-25 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAlgorithmsArtificial IntelligenceBiological ModelsCalibrationCancer DetectionCancerousCause of DeathClinicalDataDetectionDevelopmentDiagnosisDiagnostic Neoplasm StagingDiscipline of Nuclear MedicineDiseaseFluorineGoalsHumanHybridsImageImage AnalysisImaging technologyInfiltrationInstitutionLesionLinkMalignant NeoplasmsManualsManufacturerMeasurementMeasuresMedicalMetabolicMethodsModelingModernizationMorbidity - disease rateOutcomePathway interactionsPatient-Focused OutcomesPatientsPerformancePhysiciansPositron-Emission TomographyProtocols documentationPublic HealthPublishingRecurrent Malignant NeoplasmResolutionScreening for cancerSiteStagingSystemTimeTissuesTranslationsUnited StatesVariantVendorX-Ray Computed TomographyX-Ray Computed Tomography Scannersartificial intelligence methodcancer diagnosiscancer imagingcancer recurrencedeep learning modeldeep neural networkdetection limitdetection methodfluorodeoxyglucoseimage reconstructionimaging systemimprovedindustry partnerintelligent algorithmloss of functionlymph nodesnovelopen dataplatform-independentradiologistreconstructionsimulationtomographytooltumor
项目摘要
Project summary
Detection and diagnosis of smaller and earlier-stage cancers significantly improves a patient's chances of
survival. Positron emission tomography (PET) imaging using fluorine 18–fluorodeoxyglucose (FDG-PET)
provides a functional or metabolic assessment of normal versus cancerous tissues, and since 2000 has been
widely used clinically for the detection and diagnosis of many cancers. Studies over a decade ago by our group
and others had shown that it was feasible to both measure and improve the detection ability of FDG-PET
imaging for cancer by adjusting acquisition and image reconstruction parameters. This could be done
systematically by evaluating the effect on observer models that replicated human performance (i.e. radiologists
or nuclear medicine physicians). At the time, however, it is challenging to understand how this varied across
systems with different resolutions, sensitivities, and reconstruction algorithms, or if they were operated
differently across imaging sites.
Over the last decade there have been dramatic improvements in scanner resolution, sensitivity, and
reconstruction algorithms, as well as the routine adoption of time-of-flight PET imaging. In parallel there has
been an improved understanding and adoption of model observers, as well as pathways for adoption or
harmonization of methods across multiple PET manufacturers and imaging sites. Most recently there has been
the development of machine intelligence algorithms, such deep neural networks, for both image reconstruction
and image analysis, which have the potential to improve performance.
We are proposing to take advantage of these developments to characterize, optimize, and harmonize cancer
detection with PET imaging. The three specific aims are: (1) Develop methods for characterization (i.e.
measurement) of detection performance for FDG PET imaging. (2) Using a model system calibrated to a
modern physical system we will then determine how to optimize cancer detection as a function of acquisition
and image reconstruction parameters. (3) Finally we will develop a platform-independent (vendor agnostic)
standard that can be applied across systems and imaging sites. This will lead to a roadmap for multi-site and
multi-vendor implementation approaches that optimizing cancer detectability and thus improved patient
outcomes.
项目摘要
较小和更早的癌症的检测和诊断可显着提高患者的机会
生存。使用氟18-氟脱氧葡萄糖(FDG-PET)的正电子发射断层扫描(PET)成像
提供正常组织和取消组织的功能或代谢评估,自2000年以来
在临床上广泛用于检测和诊断许多癌症。十年前我们小组的研究
其他人则表明,测量和提高FDG-PET的检测能力是可行的
通过调整采集和图像重建参数来对癌症进行成像。可以做到
通过评估复制人类绩效的观察者模型的影响(即放射学家
或核医学医师)。然而,当时,了解这种情况如何变化是一个挑战
具有不同分辨率,灵敏度和重建算法的系统,或者是否操作
在成像站点之间的不同。
在过去的十年中,扫描仪的分辨率,灵敏度和
重建算法以及飞行时间宠物成像的常规采用。并行
是对模型观察者的理解和采用,以及采用途径或
跨多个宠物制造商和成像站点的方法协调。最近有
这两个图像重建
和图像分析,有可能提高性能。
我们建议利用这些发展来表征,优化和协调癌症
用宠物成像检测。三个具体目的是:(1)开发表征的方法(即
测量FDG PET成像的检测性能。 (2)使用校准到A的模型系统
然后,我们将确定如何优化癌症检测作为获取的函数
和图像重建参数。 (3)最后,我们将开发独立于平台的(供应商不可知论)
可以跨系统和成像站点应用的标准。这将导致多站点的路线图和
多供应商实施方法优化癌症可检测性并因此改善了患者
结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul E. Kinahan其他文献
ブリッジ検出器によるDual-Ring OpenPETの画質改善効果の検討
使用桥检测器检查 Dual-Ring OpenPET 的图像质量改善效果
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
田島英朗;山谷泰賀;Paul E. Kinahan - 通讯作者:
Paul E. Kinahan
Paul E. Kinahan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul E. Kinahan', 18)}}的其他基金
Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
- 批准号:
10363601 - 财政年份:2022
- 资助金额:
$ 66.68万 - 项目类别:
Calibrated Methods for Quantitative PET/CT Imaging
定量 PET/CT 成像的校准方法
- 批准号:
8311868 - 财政年份:2012
- 资助金额:
$ 66.68万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8657576 - 财政年份:2011
- 资助金额:
$ 66.68万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8531689 - 财政年份:2011
- 资助金额:
$ 66.68万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8336825 - 财政年份:2011
- 资助金额:
$ 66.68万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8230446 - 财政年份:2011
- 资助金额:
$ 66.68万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8699715 - 财政年份:2011
- 资助金额:
$ 66.68万 - 项目类别:
相似国自然基金
基于“人工智能算法+高精度遥感数据”的棉花表型信息识别及解析
- 批准号:32360436
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
人工智能反馈寻求行为的驱动机制和双刃剑效应研究
- 批准号:72302082
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向智能电网用户侧的智能优化调度和人工智能算法安全研究
- 批准号:62373297
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
人工智能算法嵌入街头官僚决策的行为效应及其认知触发机制研究
- 批准号:72304110
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于生成式人工智能的易合成与高生物活性的分子三维结构设计
- 批准号:22373085
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
Accelerating genomic analysis for time critical clinical applications
加速时间紧迫的临床应用的基因组分析
- 批准号:
10593480 - 财政年份:2023
- 资助金额:
$ 66.68万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 66.68万 - 项目类别:
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
$ 66.68万 - 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 66.68万 - 项目类别:
Skills and Workforce Core- Ping/Watson
技能和劳动力核心 - Ping/Watson
- 批准号:
10863104 - 财政年份:2023
- 资助金额:
$ 66.68万 - 项目类别: