Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
基本信息
- 批准号:10579947
- 负责人:
- 金额:$ 66.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-25 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAlgorithmsArtificial IntelligenceBiological ModelsCalibrationCancer DetectionCancerousCause of DeathClinicalDataDetectionDevelopmentDiagnosisDiagnostic Neoplasm StagingDiscipline of Nuclear MedicineDiseaseFluorineGoalsHumanHybridsImageImage AnalysisImaging technologyInfiltrationInstitutionLesionLinkMalignant NeoplasmsManualsManufacturerMeasurementMeasuresMedicalMetabolicMethodsModelingModernizationMorbidity - disease rateOutcomePathway interactionsPatient-Focused OutcomesPatientsPerformancePhysiciansPositron-Emission TomographyProtocols documentationPublic HealthPublishingRecurrent Malignant NeoplasmResolutionScreening for cancerSiteStagingSystemTimeTissuesTranslationsUnited StatesVariantVendorX-Ray Computed TomographyX-Ray Computed Tomography Scannersartificial intelligence methodcancer diagnosiscancer imagingcancer recurrencedeep learning modeldeep neural networkdetection limitdetection methodfluorodeoxyglucoseimage reconstructionimaging systemimprovedindustry partnerintelligent algorithmloss of functionlymph nodesnovelopen dataplatform-independentradiologistreconstructionsimulationtomographytooltumor
项目摘要
Project summary
Detection and diagnosis of smaller and earlier-stage cancers significantly improves a patient's chances of
survival. Positron emission tomography (PET) imaging using fluorine 18–fluorodeoxyglucose (FDG-PET)
provides a functional or metabolic assessment of normal versus cancerous tissues, and since 2000 has been
widely used clinically for the detection and diagnosis of many cancers. Studies over a decade ago by our group
and others had shown that it was feasible to both measure and improve the detection ability of FDG-PET
imaging for cancer by adjusting acquisition and image reconstruction parameters. This could be done
systematically by evaluating the effect on observer models that replicated human performance (i.e. radiologists
or nuclear medicine physicians). At the time, however, it is challenging to understand how this varied across
systems with different resolutions, sensitivities, and reconstruction algorithms, or if they were operated
differently across imaging sites.
Over the last decade there have been dramatic improvements in scanner resolution, sensitivity, and
reconstruction algorithms, as well as the routine adoption of time-of-flight PET imaging. In parallel there has
been an improved understanding and adoption of model observers, as well as pathways for adoption or
harmonization of methods across multiple PET manufacturers and imaging sites. Most recently there has been
the development of machine intelligence algorithms, such deep neural networks, for both image reconstruction
and image analysis, which have the potential to improve performance.
We are proposing to take advantage of these developments to characterize, optimize, and harmonize cancer
detection with PET imaging. The three specific aims are: (1) Develop methods for characterization (i.e.
measurement) of detection performance for FDG PET imaging. (2) Using a model system calibrated to a
modern physical system we will then determine how to optimize cancer detection as a function of acquisition
and image reconstruction parameters. (3) Finally we will develop a platform-independent (vendor agnostic)
standard that can be applied across systems and imaging sites. This will lead to a roadmap for multi-site and
multi-vendor implementation approaches that optimizing cancer detectability and thus improved patient
outcomes.
项目摘要
对较小和早期癌症的检测和诊断显著提高了患者的生存机会。
生存使用氟18-氟脱氧葡萄糖(FDG-PET)的正电子发射断层扫描(PET)成像
提供正常组织与癌组织的功能或代谢评估,自2000年以来,
在临床上广泛用于许多癌症的检测和诊断。十多年前,我们的研究小组
其他研究表明,测量和提高FDG-PET的探测能力是可行的
通过调整采集和图像重建参数来进行癌症成像。为此可
系统地通过评估对复制人类表现的观察者模型(即放射科医生)的影响
或核医学医师)。然而,在当时,要理解这一点在不同国家之间的变化是具有挑战性的。
具有不同分辨率、灵敏度和重建算法的系统,或者如果它们被操作
在不同的成像部位。
在过去的十年里,扫描仪的分辨率、灵敏度和
重建算法,以及飞行时间PET成像的常规采用。与此同时,
改进对示范观察员的理解和采用,以及采用或
协调多个PET制造商和成像站点的方法。最近,
机器智能算法的发展,如深度神经网络,用于图像重建
和图像分析,这有可能提高性能。
我们建议利用这些发展来描述、优化和协调癌症
PET成像检测。三个具体目标是:(1)开发表征方法(即,
测量)用于FDG PET成像的检测性能。(2)使用校准到
现代物理系统,我们将确定如何优化癌症检测作为采集的函数
和图像重建参数。(3)最后,我们将开发一个平台无关(供应商不可知)
可以应用于系统和成像站点的标准。这将导致多站点路线图,
多供应商实施方法,优化癌症检测能力,从而改善患者
结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul E. Kinahan其他文献
Multiparametric Quantitative Imaging in Risk Prediction: Recommendations for Data Acquisition, Technical Performance Assessment, and Model Development and Validation
多参数定量成像在风险预测中的应用:数据采集、技术性能评估以及模型开发和验证的建议
- DOI:
10.1016/j.acra.2022.09.018 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:3.900
- 作者:
Erich P. Huang;Gene Pennello;Nandita M. deSouza;Xiaofeng Wang;Andrew J. Buckler;Paul E. Kinahan;Huiman X. Barnhart;Jana G. Delfino;Timothy J. Hall;David L. Raunig;Alexander R. Guimaraes;Nancy A. Obuchowski - 通讯作者:
Nancy A. Obuchowski
Characterization of PET/CT images using texture analysis: the past, the present… any future?
- DOI:
10.1007/s00259-016-3427-0 - 发表时间:
2016-06-06 - 期刊:
- 影响因子:7.600
- 作者:
Mathieu Hatt;Florent Tixier;Larry Pierce;Paul E. Kinahan;Catherine Cheze Le Rest;Dimitris Visvikis - 通讯作者:
Dimitris Visvikis
ブリッジ検出器によるDual-Ring OpenPETの画質改善効果の検討
使用桥检测器检查 Dual-Ring OpenPET 的图像质量改善效果
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
田島英朗;山谷泰賀;Paul E. Kinahan - 通讯作者:
Paul E. Kinahan
Semiautomated Extraction of Research Topics and Trends From National Cancer Institute Funding in Radiological Sciences From 2000 to 2020
2000年至2020年从美国国家癌症研究所放射科学资助中半自动提取研究主题和趋势
- DOI:
10.1016/j.ijrobp.2025.01.009 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:6.500
- 作者:
Mark H. Nguyen;Peter G. Beidler;Joseph Tsai;August Anderson;Daniel Chen;Paul E. Kinahan;John Kang - 通讯作者:
John Kang
Multimodality molecular imaging of the lung
- DOI:
10.1007/s40336-014-0084-9 - 发表时间:
2014-10-16 - 期刊:
- 影响因子:1.600
- 作者:
Delphine L. Chen;Paul E. Kinahan - 通讯作者:
Paul E. Kinahan
Paul E. Kinahan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul E. Kinahan', 18)}}的其他基金
Characterizing, optimizing, and harmonizing cancer detection with PET imaging
通过 PET 成像表征、优化和协调癌症检测
- 批准号:
10363601 - 财政年份:2022
- 资助金额:
$ 66.68万 - 项目类别:
Calibrated Methods for Quantitative PET/CT Imaging
定量 PET/CT 成像的校准方法
- 批准号:
8311868 - 财政年份:2012
- 资助金额:
$ 66.68万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8657576 - 财政年份:2011
- 资助金额:
$ 66.68万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8531689 - 财政年份:2011
- 资助金额:
$ 66.68万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8336825 - 财政年份:2011
- 资助金额:
$ 66.68万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8230446 - 财政年份:2011
- 资助金额:
$ 66.68万 - 项目类别:
Patient-specific predictive modeling that integrates advanced cancer imaging
集成先进癌症成像的患者特异性预测模型
- 批准号:
8699715 - 财政年份:2011
- 资助金额:
$ 66.68万 - 项目类别:
相似海外基金
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
- 批准号:
2236926 - 财政年份:2023
- 资助金额:
$ 66.68万 - 项目类别:
Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
- 批准号:
LP210200798 - 财政年份:2023
- 资助金额:
$ 66.68万 - 项目类别:
Linkage Projects
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 66.68万 - 项目类别:
Standard Grant
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
- 批准号:
2765246 - 财政年份:2022
- 资助金额:
$ 66.68万 - 项目类别:
Studentship
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
- 批准号:
ES/R00983X/2 - 财政年份:2022
- 资助金额:
$ 66.68万 - 项目类别:
Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 66.68万 - 项目类别:
Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
- 批准号:
10683803 - 财政年份:2022
- 资助金额:
$ 66.68万 - 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
- 批准号:
460558 - 财政年份:2022
- 资助金额:
$ 66.68万 - 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
- 批准号:
RGPIN-2022-04417 - 财政年份:2022
- 资助金额:
$ 66.68万 - 项目类别:
Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
- 批准号:
10544772 - 财政年份:2022
- 资助金额:
$ 66.68万 - 项目类别:














{{item.name}}会员




