CZT Semiconductors: Growth, atomic-level properties, and integration in X-ray detectors
CZT 半导体:生长、原子级特性以及 X 射线探测器中的集成
基本信息
- 批准号:577354-2022
- 负责人:
- 金额:$ 19.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CdZnTe (CZT) semiconductors are currently the subject of extensive investigations as the material of choice for future generations of radiation detectors used in health care and security applications. Indeed, CZT detectors can deliver clear signals due to their stronger interaction with radiation, and their efficient generation and collection of charge carriers. These attributes, related to CZT higher average atomic number and its relatively large bandgap, provide a promising path to address the current limitations in X-ray detection technologies where, for instance, cryogenic cooling is typically required to limit the thermally generated noise, which makes these detectors bulky, expensive to acquire and maintain, and impractical for portable applications. However, exploiting this potential still faces major challenges as it requires high purity, low-defect, and homogenous semi-insulating crystals. These prerequisites are yet to be satisfied in commercial detector-grade CZT crystals, which typically suffer high concentrations of defects including Te-rich inclusions, dislocations, and twin- and subgrain-boundaries. These imperfections limit the efficiency and hinder the uniform and controlled large-scale production of detectors. This project aims at tackling these challenges by introducing new experimental and theoretical tools to investigate the atomic-level properties of CZT crystals and establish their role in shaping the behavior of photogenerated charge carriers. These fundamental aspects must be solved to reap substantial benefits at the forefront of new socio-economic and social opportunities. The proposed research will contribute to developing expertise and know-how of great relevance to the future needs of semiconductor technologies, training highly qualified personnel in high demand by academia and industry, and increasing the global competitiveness of Canadian universities and industries.
CdZnTe(CZT)半导体目前是广泛研究的主题,作为未来几代用于医疗保健和安全应用的辐射探测器的首选材料。事实上,CZT探测器可以提供清晰的信号,因为它们与辐射的相互作用更强,并且它们有效地产生和收集电荷载流子。与CZT较高的平均原子序数及其相对较大的带隙相关的这些属性提供了解决X射线检测技术中的当前限制的有希望的途径,其中,例如,通常需要低温冷却来限制热生成的噪声,这使得这些检测器体积庞大,获取和维护昂贵,并且对于便携式应用不切实际。然而,利用这种潜力仍然面临着重大挑战,因为它需要高纯度,低缺陷和均匀的半绝缘晶体。这些先决条件尚未在商业探测器级CZT晶体中得到满足,其通常遭受高浓度的缺陷,包括富Te夹杂物、位错以及孪晶和亚晶界。这些缺陷限制了效率并阻碍了检测器的均匀和受控的大规模生产。该项目旨在通过引入新的实验和理论工具来解决这些挑战,以研究CZT晶体的原子级特性,并确定它们在塑造光生载流子行为中的作用。必须解决这些基本问题,以便在新的社会经济和社会机会的最前沿获得实质性利益。拟议的研究将有助于开发与半导体技术未来需求密切相关的专业知识和技术诀窍,培养学术界和工业界高度需求的高素质人才,并提高加拿大大学和工业的全球竞争力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Moutanabbir, OussamaO其他文献
Moutanabbir, OussamaO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Moutanabbir, OussamaO', 18)}}的其他基金
Unraveling the Atomic Features of Topological Qubits
揭示拓扑量子位的原子特征
- 批准号:
576697-2022 - 财政年份:2022
- 资助金额:
$ 19.82万 - 项目类别:
Alliance Grants
相似海外基金
Direct growth of ternary or higher arsenide-based semiconductors on Si(001) epitaxial substrates
在 Si(001) 外延衬底上直接生长三元或更高砷化物基半导体
- 批准号:
23K04598 - 财政年份:2023
- 资助金额:
$ 19.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-polar plane growth of AlGaN nitride semiconductors and its application to deep UV LED
AlGaN氮化物半导体非极性面生长及其在深紫外LED中的应用
- 批准号:
22H01970 - 财政年份:2022
- 资助金额:
$ 19.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Growth and integration of phase change metal-chalcogenide semiconductors into optical fiber and waveguide integrated nanophotonic metamaterial modulators
相变金属硫族化物半导体的生长和集成到光纤和波导集成纳米光子超材料调制器中
- 批准号:
561145-2020 - 财政年份:2021
- 资助金额:
$ 19.82万 - 项目类别:
Alliance Grants
New concept for crystal growth of nitride semiconductors using extended degree of freedom
使用扩展自由度进行氮化物半导体晶体生长的新概念
- 批准号:
21H04609 - 财政年份:2021
- 资助金额:
$ 19.82万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
EPItaxial growth and in-situ analysis of 2 dimensional SEMiconductors
二维半导体半导体的外延生长和原位分析
- 批准号:
2595589 - 财政年份:2021
- 资助金额:
$ 19.82万 - 项目类别:
Studentship
EPI2SEM: EPItaxial growth and in-situ analysis of 2-dimensional SEMiconductors
EPI2SEM:二维 SEM 导体的外延生长和原位分析
- 批准号:
EP/T019018/1 - 财政年份:2020
- 资助金额:
$ 19.82万 - 项目类别:
Research Grant
Growth and integration of phase change metal-chalcogenide semiconductors into optical fiber and waveguide integrated nanophotonic metamaterial modulators
相变金属硫族化物半导体的生长和集成到光纤和波导集成纳米光子超材料调制器中
- 批准号:
561145-2020 - 财政年份:2020
- 资助金额:
$ 19.82万 - 项目类别:
Alliance Grants
Control of heterointerface region in the heteroepitaxial growth of In-based nitride semiconductors
In基氮化物半导体异质外延生长中异质界面区域的控制
- 批准号:
20K05348 - 财政年份:2020
- 资助金额:
$ 19.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Growth of 2D semiconductors-based lateral homojunctions
基于二维半导体的横向同质结的生长
- 批准号:
19K15403 - 财政年份:2019
- 资助金额:
$ 19.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Fabrication of Direct Bandgap Group-IV Semiconductors by Utilizing Sn Alloying Technique Based on Rapid Melting Growth and Its Electrical Characterization
基于快速熔融生长的Sn合金化直接带隙IV族半导体及其电学表征
- 批准号:
19K15035 - 财政年份:2019
- 资助金额:
$ 19.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists