Collaborative Research: Mixed-Autonomy Traffic Networks: Routing Games and Learning Human Choice Models

合作研究:混合自主交通网络:路由博弈和学习人类选择模型

基本信息

  • 批准号:
    1952920
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Autonomous and connected vehicles are soon becoming a significant part of roads normally used by human drivers. Such vehicles hold the promise of safer streets, better fuel efficiency, more flexibility in tailoring to specific drivers’ needs, and time savings. However, the appearance of autonomous vehicles driving on roads shared by human-driven cars introduce many interesting and timely challenges. The goal of this proposal is to study (i) traffic networks with mixed autonomy where a fraction of cars are autonomous and the rest are human-driven, and (ii) how humans choose their routes in a traffic network given different options of autonomous service and prices. By studying models of humans’ choices and investigating the characterizations of traffic flow in networks with mixed autonomy, the project develops routing policies to lead the network to an efficient equilibrium with low average latency.This proposal aims to study routing games and human choice models for traffic networks with mixed autonomy. Many studies have shown that mobility can be enhanced in traffic networks such as freeways or signalized intersections when all cars are autonomous; however, such improvement is far from clear for a network with mixed autonomy. The goal of this project is to study the game theory of mixed-autonomy traffic networks and control the autonomous cars’ routing decisions such that the system reaches an optimum equilibrium. Moreover, a novel approach in learning human choices of prices in autonomous transportation services versus latency, or travel time, is developed. Finally, using the well-known fundamental diagram of traffic and cell-transmission model, a dynamic mixed-autonomy traffic model is introduced. Using this dynamic model, we will leverage tools from reinforcement learning to route autonomous cars dynamically and optimally. The proposed research considers both theoretical study of routing games as well as implementation of the developed algorithms in traffic simulators, in particular simulation of Urban Mobility (SUMO). The learned human choice models will also be validated through human subject studies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自动驾驶和联网车辆很快将成为人类驾驶员通常使用的道路的重要组成部分。这种车辆有望使街道更安全,燃油效率更高,更灵活地满足特定驾驶员的需求,并节省时间。然而,自动驾驶车辆在人类驾驶的汽车共享的道路上行驶的出现引入了许多有趣且及时的挑战。该提案的目标是研究(i)具有混合自主性的交通网络,其中一部分汽车是自主的,其余的是人类驾驶的,以及(ii)在给定不同的自主服务和价格选项的情况下,人类如何在交通网络中选择路线。通过研究人的选择模型和混合自治网络中交通流的特征,提出了一种使网络在平均延迟较低的情况下达到有效均衡的路由策略,旨在研究混合自治交通网络中的路由博弈和人的选择模型。许多研究表明,当所有汽车都是自主的时,在高速公路或信号交叉口等交通网络中,移动性可以得到增强;然而,对于具有混合自主性的网络,这种改善还远未明确。本计画的目的是研究混合自动化交通网路的博奕理论,并控制自动汽车的路径决策,使系统达到最佳平衡。此外,开发了一种新的方法来学习人类在自主运输服务中对延迟或旅行时间的价格选择。最后,利用交通基本图和信元传输模型,提出了一种动态混合自治交通模型。使用这个动态模型,我们将利用强化学习的工具来动态和最佳地路由自动汽车。建议的研究既考虑了路由游戏的理论研究,也考虑了在交通模拟器中实现所开发的算法,特别是城市移动性模拟(SUMO)。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Congestion-aware Bi-modal Delivery Systems Utilizing Drones
  • DOI:
    10.23919/ecc55457.2022.9838052
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Beliaev;Negar Mehr;Ramtin Pedarsani
  • 通讯作者:
    M. Beliaev;Negar Mehr;Ramtin Pedarsani
Social Coordination and Altruism in Autonomous Driving
  • DOI:
    10.1109/tits.2022.3207872
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    8.5
  • 作者:
    Behrad Toghi;Rodolfo Valiente;Dorsa Sadigh;Ramtin Pedarsani;Y. P. Fallah
  • 通讯作者:
    Behrad Toghi;Rodolfo Valiente;Dorsa Sadigh;Ramtin Pedarsani;Y. P. Fallah
Learning How to Dynamically Route Autonomous Vehicles on Shared Roads
  • DOI:
    10.1016/j.trc.2021.103258
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel A. Lazar;Erdem Biyik;Dorsa Sadigh;Ramtin Pedarsani
  • 通讯作者:
    Daniel A. Lazar;Erdem Biyik;Dorsa Sadigh;Ramtin Pedarsani
Incentivizing Efficient Equilibria in Traffic Networks With Mixed Autonomy
Imitation Learning by Estimating Expertise of Demonstrators
  • DOI:
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Beliaev;Andy Shih;Stefano Ermon;Dorsa Sadigh;Ramtin Pedarsani
  • 通讯作者:
    M. Beliaev;Andy Shih;Stefano Ermon;Dorsa Sadigh;Ramtin Pedarsani
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ramtin Pedarsani其他文献

Asynchronous and noncoherent neighbor discovery for the IoT using sparse-graph codes
使用稀疏图代码的物联网异步和非相干邻居发现
Control and Management of Urban Traffic Networks with Mixed Autonomy
Optimality of Least-squares for Classification in Gaussian-Mixture Models
高斯混合模型中分类的最小二乘最优性
Capacity-approaching PhaseCode for low-complexity compressive phase retrieval
用于低复杂度压缩相位检索的接近容量的 PhaseCode
Robust scheduling for flexible processing networks
灵活处理网络的鲁棒调度
  • DOI:
    10.1017/apr.2017.14
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Ramtin Pedarsani;J. Walrand;Y. Zhong
  • 通讯作者:
    Y. Zhong

Ramtin Pedarsani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ramtin Pedarsani', 18)}}的其他基金

NSF-NSERC: Fairness Fundamentals: Geometry-inspired Algorithms and Long-term Implications
NSF-NSERC:公平基础:几何启发的算法和长期影响
  • 批准号:
    2342253
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
  • 批准号:
    2236483
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
MLWiNS: Optimization and Coding Theory for Fast and Robust Wireless Distributed Learning
MLWiNS:快速、稳健的无线分布式学习的优化和编码理论
  • 批准号:
    2003035
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
CIF: Small: A Systematic Approach to Adversarial Machine Learning: Sparsity-based Defenses and Locally Linear Attacks
CIF:小型:对抗性机器学习的系统方法:基于稀疏性的防御和局部线性攻击
  • 批准号:
    1909320
  • 财政年份:
    2019
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
CRII: CIF: Next-Generation Group Testing for Neighbor Discovery in the IoT via Sparse-Graph Codes
CRII:CIF:通过稀疏图代码在物联网中进行邻居发现的下一代组测试
  • 批准号:
    1755808
  • 财政年份:
    2018
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Humidity and Temperature Effects on Phase Separation and Particle Morphology in Internally Mixed Organic-Inorganic Aerosol
合作研究:湿度和温度对内部混合有机-无机气溶胶中相分离和颗粒形态的影响
  • 批准号:
    2412046
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
  • 批准号:
    2401007
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Molecular and Nanoscale Structure and Interactions of PFAS at Interfaces and Mixed Surfactant Systems
合作研究:PFAS 的分子和纳米结构以及界面和混合表面活性剂体系的相互作用
  • 批准号:
    2227128
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Molecular and Nanoscale Structure and Interactions of PFAS at Interfaces and Mixed Surfactant Systems
合作研究:PFAS 的分子和纳米结构以及界面和混合表面活性剂体系的相互作用
  • 批准号:
    2227135
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Initiation: Formation of the Foundations for Engineering Intuition in Structural Engineering with Mixed Reality
合作研究:研究启动:混合现实结构工程中工程直觉基础的形成
  • 批准号:
    2306230
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Data-Enabled Predictive Control for Heterogeneous Mixed Traffic Systems
协作研究:异构混合流量系统的可扩展数据支持预测控制
  • 批准号:
    2320697
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: The Future of Aviation Inspection: Artificial Intelligence and Mixed Reality as Agents of Transformation
FW-HTF-RL/合作研究:航空检查的未来:人工智能和混合现实作为转型的推动者
  • 批准号:
    2326186
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: The Future of Aviation Inspection: Artificial Intelligence and Mixed Reality as Agents of Transformation
FW-HTF-RL/合作研究:航空检查的未来:人工智能和混合现实作为转型的推动者
  • 批准号:
    2326187
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Data-Enabled Predictive Control for Heterogeneous Mixed Traffic Systems
协作研究:异构混合流量系统的可扩展数据支持预测控制
  • 批准号:
    2320698
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: HCC: Buenas - Giving All a Seat at the Table Using Mixed Reality
协作研究:CISE-MSI:DP:HCC:布埃纳斯 - 使用混合现实为所有人提供席位
  • 批准号:
    2318657
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了