I-Corps: A Learned Cloud Infrastructure-as-Code (IaC) Linter
I-Corps:学习型云基础设施即代码 (IaC) Linter
基本信息
- 批准号:2344828
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this I-Corps project is the development of a tool for orchestrating cloud computing resources. It is designed for cloud providers to make their service easier to access, and for cloud tenants for migrating their workloads to the cloud. Existing tools are derived from low-level cloud application programming interface (API) specifications, which fail to capture a complete picture of the interactions between cloud resources. Therefore, they can make mistakes or leave problems undetected until the deployment is run. The proposed technology is an infrastructure-as-code (IaC) tool that increases the reliability of IaC cloud resource deployment. It has the potential to detect many classes of bugs and misconfigurations to reduce the number of errors and security vulnerabilities in the actual deployment. The proposed technology may be able to detect a variety of cloud deployment problems in advance and help suggest repairs. This may change the status-quo on how people manage and deploy public cloud infrastructure, and may reduce manpower needed for the development and deployment life cycle of cloud tenants.This I-Corps project is based on the development of a learned cloud infrastructure-as-code (IaC) linter that enables extracting cloud provider requirements automatically and formalizes them as configuration checks. This is an end-to-end tool chain to extract cloud provider requirements from various sources, formally validate their correctness, and turn them into efficient checks against user-written IaC configurations. While previous IaC linters could check against security or policy compliance based on manually written rules, the proposed technology takes automatically extracted provider conformance rules as the first-class objective. This technology is part of a long-term research endeavor that aims at simplifying cloud management with infrastructure clarity. The goal is to bridge the communication gap between the internal logistics of cloud providers and the intent from various cloud tenants, which hampers the adoption of public cloud services. To mitigate this problem, the proposed technology leverages a unique combination of interdisciplinary techniques, including well-established concepts such as program analysis, formal reasoning, and software testing, as well as fast-growing technologies such as large language models. This tool may help users detect misconfigurations and security problems before they manifest, saving time, manpower and money required to fix problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个I-Corps项目更广泛的影响/商业潜力是开发一种用于编排云计算资源的工具。 它专为云提供商设计,使他们的服务更容易访问,并为云租户将其工作负载迁移到云。 现有的工具是从低级云应用程序编程接口(API)规范派生的,这些规范无法捕捉云资源之间交互的完整画面。因此,他们可能会犯错误,或者在部署运行之前未检测到问题。 所提出的技术是一种基础设施即代码(IaC)工具,可提高IaC云资源部署的可靠性。它有可能检测到许多类型的错误和错误配置,以减少实际部署中的错误和安全漏洞的数量。这项技术可以提前检测各种云部署问题,并帮助提出修复建议。这可能会改变人们如何管理和部署公共云基础设施的现状,并可能减少云租户开发和部署生命周期所需的人力。这个I-Corps项目是基于一个学习的云基础设施即代码(IaC)linter的开发,它可以自动提取云提供商的需求,并将其形式化为配置检查。 这是一个端到端的工具链,用于从各种来源提取云提供商的需求,正式验证其正确性,并将其转化为针对用户编写的IaC配置的有效检查。虽然以前的IaC链接器可以根据手动编写的规则检查安全性或策略合规性,但所提出的技术将自动提取的提供商一致性规则作为第一级目标。这项技术是一项长期研究奋进的一部分,旨在通过基础设施的清晰度来简化云管理。其目标是弥合云提供商的内部物流与各种云租户的意图之间的沟通差距,这阻碍了公共云服务的采用。为了缓解这个问题,所提出的技术利用了跨学科技术的独特组合,包括程序分析、形式推理和软件测试等成熟的概念,以及大型语言模型等快速发展的技术。 这个工具可以帮助用户在错误配置和安全问题出现之前就发现它们,从而节省修复问题所需的时间、人力和金钱。这个奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ang Chen其他文献
Interactive Impact of Intrinsic Motivators and Extrinsic Rewards on Behavior and Motivation Outcomes
内在激励因素和外在奖励对行为和激励结果的交互影响
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Ping Xiang;Ang Chen;A. Bruene - 通讯作者:
A. Bruene
An Examination of Learning Profiles in Physical Education.
体育学习概况检查。
- DOI:
10.1123/jtpe.26.2.145 - 发表时间:
2007 - 期刊:
- 影响因子:2.8
- 作者:
Bo Shen;Ang Chen - 通讯作者:
Ang Chen
Single-phase dielectric compounds in the BaO-rich corner of the BaO-Re203-Ti02 ternary system (Re = Y, Nd, and Sm)
BaO-Re2O3-Ti02 三元系统(Re = Y、Nd 和 Sm)的富含 BaO 角的单相介电化合物
- DOI:
10.1007/bf00240791 - 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
Ang Chen;Y. Zhi;V. Ferreira;P. Vilarinho;J. Baptista - 通讯作者:
J. Baptista
Three-Year Trajectory of Interest in Learning Physical Activity Knowledge: Influences of Gender and Prior Knowledge
学习体育活动知识的三年兴趣轨迹:性别和先验知识的影响
- DOI:
10.1123/jtpe.2020-0009 - 发表时间:
2020 - 期刊:
- 影响因子:2.8
- 作者:
Yubing Wang;Tan Zhang;Ang Chen - 通讯作者:
Ang Chen
Abiotic transformation of atrazine in aqueous phase by biogenic bixbyite-type Mnsub2/subOsub3/sub produced by a soil-derived Mn(II)-oxidizing bacterium of emProvidencia/em sp.
由土壤来源的普罗威登斯菌属(Providencia)的锰(II)氧化细菌产生的生物成因板钛矿型二氧化锰(Mn₂O₃)对水溶液中阿特拉津的非生物转化。
- DOI:
10.1016/j.jhazmat.2022.129243 - 发表时间:
2022-08-15 - 期刊:
- 影响因子:11.300
- 作者:
Jun Luo;Xiaofang Ruan;Wuying Chen;Sha Chen;Zhexu Ding;Ang Chen;Ding Li - 通讯作者:
Ding Li
Ang Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ang Chen', 18)}}的其他基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
CAREER: Programmable In-network Security
职业:可编程网络安全
- 批准号:
2420309 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Large: Runtime Programmable Networks
合作研究:CNS 核心:大型:运行时可编程网络
- 批准号:
2214272 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2106388 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2106751 - 财政年份:2021
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
CAREER: Programmable In-network Security
职业:可编程网络安全
- 批准号:
1942219 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
NeTS: Medium: Streaming Data Analytics over Programmable Datacenter Networks
NeTS:媒介:通过可编程数据中心网络进行流数据分析
- 批准号:
1801884 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
相似海外基金
Investigating the Trustworthiness of Deep Pre-trained and Self-supervised Learned Model.
研究深度预训练和自监督学习模型的可信度。
- 批准号:
24K20806 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Scaling Disk-Resident Learned Indexes For Database Systems
扩展数据库系统的磁盘驻留学习索引
- 批准号:
DP240101211 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Discovery Projects
SBIR Phase I: Trajectory Optimizations and Learned Foliage Manipulation to Accelerate Throughput in Automated Strawberry Harvesting
SBIR 第一阶段:轨迹优化和学习叶子操纵,以提高自动化草莓收获的吞吐量
- 批准号:
2322402 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Development of multi-contact motion planning based on learned future contact feasibility
基于了解的未来接触可行性开发多接触运动规划
- 批准号:
23K16978 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
- 批准号:
10678264 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
The evolutionary dynamics of learned bird song
习得鸟鸣的进化动力学
- 批准号:
2327982 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Space programs in developing countries: rationale, modalities of implementation, and lessons learned
发展中国家的空间计划:理由、实施方式和经验教训
- 批准号:
23K12401 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Applying methods & lessons learned from online illicit trade detection to CSA text links
使用方法
- 批准号:
10070472 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Collaborative R&D
Development of transmissive light diffuser that combines "brightness, wide angle, and no color dispersion" learned from the disorder in creatures
从生物的紊乱中汲取经验,开发出兼具“亮度、广角、无色散”的透射式光扩散器
- 批准号:
23H01878 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CIF:Small:Toward a Modern Theory of Compression: Manifold Sources and Learned Compressors
CIF:小:迈向现代压缩理论:流形源和学习压缩机
- 批准号:
2306278 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant