High-Schmidt number turbulent mixing as an aggregation process
高施密特数湍流混合作为聚集过程
基本信息
- 批准号:258767971
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The mixing of passively advected substances in turbulent flows is a fundamental process omnipresent in many geophysical, industrial, natural or man-made applications. The interplay between the motions of the underlying stirring field and the ultimate diffusive process is non-trivial when the diffusivity of the mixed scalar concentration is smaller than the kinematic viscosity of the advecting fluid, the so-called Batchelor regime at Schmidt numbers much larger than unity. In this regime, the concentration field self-organises, below the size of the smallest eddies of the velocity field, as a set of sheets, aggregating as they fade away, thus building up the concentration content of the mixture. In the present project, we want to combine laboratory experiments and direct numerical simulations in order to explore in more details this vision of mixing as an aggregation process, and extend it to the three-dimensional case. The impact of different scalar sources as well as of different Schmidt and Reynolds numbers will be studied systematically, both in experiment and simulation, in flow configurations kept as simple as possible, in order to address the fundamentals of the overall process. The goal will be a complete description of the scalar statistics in the viscous-convective range at high Schmidt numbers on the basis of the aggregation model.
湍流中被动平流物质的混合是一个基本过程,在许多地球物理、工业、自然或人造应用中无所不在。当混合标量浓度的扩散系数小于平流流体的运动粘度时,底层搅拌场和最终扩散过程的运动之间的相互作用是不平凡的,即在施密特数远大于1时的所谓巴彻勒制度。在这种情况下,浓度场自组织,低于速度场的最小漩涡的大小,作为一组片,聚集,因为他们消失,从而建立了混合物的浓度含量。在本项目中,我们希望结合联合收割机实验室实验和直接的数值模拟,以探索更详细的混合作为一个聚集过程的这一愿景,并将其扩展到三维的情况下。将在尽可能简单的流动配置中,通过实验和模拟系统地研究不同标量源以及不同施密特数和雷诺数的影响,以解决整个过程的基本问题。我们的目标将是在聚集模型的基础上,在高施密特数的粘性对流范围内的标量统计的完整描述。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scalar gradients in stirred mixtures and the deconstruction of random fields
- DOI:10.1017/jfm.2016.799
- 发表时间:2017-01
- 期刊:
- 影响因子:3.7
- 作者:T. Le Borgne;P. Huck;M. Dentz;E. Villermaux
- 通讯作者:T. Le Borgne;P. Huck;M. Dentz;E. Villermaux
The diffusive sheet method for scalar mixing
标量混合的扩散片法
- DOI:10.1017/jfm.2017.862
- 发表时间:2018
- 期刊:
- 影响因子:3.7
- 作者:D. Martínez-Ruiz;P. Meunier;B. Favier;L. Duchemin;E. Villermaux
- 通讯作者:E. Villermaux
Dense spray evaporation as a mixing process
- DOI:10.1103/physrevfluids.1.014201
- 发表时间:2016-05-18
- 期刊:
- 影响因子:2.7
- 作者:de Rivas, A.;Villermaux, E.
- 通讯作者:Villermaux, E.
Steep Cliffs and Saturated Exponents in Three-Dimensional Scalar Turbulence.
- DOI:10.1103/physrevlett.121.264501
- 发表时间:2018-07
- 期刊:
- 影响因子:8.6
- 作者:K. Iyer;Jörg Schumacher;Jörg Schumacher;K. Sreenivasan;K. Sreenivasan;P. Yeung
- 通讯作者:K. Iyer;Jörg Schumacher;Jörg Schumacher;K. Sreenivasan;K. Sreenivasan;P. Yeung
Droplet dynamics and fine-scale structure in a shearless turbulent mixing layer with phase changes
- DOI:10.1017/jfm.2017.23
- 发表时间:2017-02
- 期刊:
- 影响因子:3.7
- 作者:P. Goetzfried;B. Kumar;R. Shaw;J. Schumacher
- 通讯作者:P. Goetzfried;B. Kumar;R. Shaw;J. Schumacher
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Jörg Schumacher其他文献
Professor Dr. Jörg Schumacher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Jörg Schumacher', 18)}}的其他基金
Phase transition to intermittent velocity gradient statistics in thermal convection
热对流中的相变到间歇速度梯度统计
- 批准号:
417275129 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Turbulent convection in liquid metals at large Rayleigh numbers
大瑞利数液态金属中的湍流对流
- 批准号:
374994652 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Numerical analysis of turbulent superstructures in thermal convection: Long-term dynamics by Lagrangian clustering and Markov state modeling
热对流中湍流上层结构的数值分析:通过拉格朗日聚类和马尔可夫状态建模进行长期动力学
- 批准号:
315181729 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Niedrigdimensionale Modelle für Raumluftströmungen in einfachen und komplexen Geometrien
简单和复杂几何形状的室内空气流动的低维模型
- 批准号:
175005396 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Turbulent heat transport in moist convection
湿对流中的湍流传热
- 批准号:
108052399 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Numerical investigation of near-wall transport and structure formation processes in turbulent Rayleigh-Bénard convection
湍流瑞利-贝纳德对流中近壁输运和结构形成过程的数值研究
- 批准号:
153847721 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Units
Niedrigdimensionale Modelle für Raumluftströmungen in einfachen und komplexen Geometrien
简单和复杂几何形状的室内空气流动的低维模型
- 批准号:
48841121 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Heisenberg Professorships
Feinstrukturstatistik der turbulenten Rayleigh-Bénard-Konvektion
湍流瑞利-贝纳德对流的精细结构统计
- 批准号:
28239117 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Non-Oberbeck-Boussinesq effects in turbulent convection in cryogenic helium at high Rayleigh numbers
高瑞利数低温氦中湍流对流的非奥伯贝克-布辛斯克效应
- 批准号:
450293408 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
关于群上的短零和序列及其cross number的研究
- 批准号:11501561
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
堆垒基与Narkiewicz常数的研究
- 批准号:11226279
- 批准年份:2012
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
FcγR基因拷贝数和狼疮性肾炎相关研究
- 批准号:30801022
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
图的一般染色数与博弈染色数
- 批准号:10771035
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:面上项目
相似海外基金
TENSOR: Turbulent boundary layer and trailing Edge Noise Study Of flow past a porous surface at high Reynolds number
张量:高雷诺数下流过多孔表面的湍流边界层和后缘噪声研究
- 批准号:
EP/X032590/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
Study on the dissipation mechanism and chemical reaction phenomena of high Schmidt number scalars near the turbulent/non-turbulent interfacial layer
湍流/非湍流界面层附近高施密特数标量的耗散机理及化学反应现象研究
- 批准号:
22K03937 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Heat transfer by using traveling wave control and laminar-turbulent intermittency in low Reynolds number flow
低雷诺数流动中使用行波控制和层流-湍流间歇性的传热
- 批准号:
19K14884 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
On the realization of unsteady simulation for extremely high Reynolds-number turbulent flows
极高雷诺数湍流非定常模拟的实现
- 批准号:
19K12005 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Experimental and numerical study on the Reynolds number dependence of surfaces in von Karman turbulent swirling flows
合作研究:冯卡门湍流旋流中表面雷诺数依赖性的实验和数值研究
- 批准号:
1805921 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Experimental and numerical study on the Reynolds number dependence of surfaces in von Karman turbulent swirling flows
合作研究:冯卡门湍流旋流中表面雷诺数依赖性的实验和数值研究
- 批准号:
1803945 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Elucidation and modeling for the high Peclet number turbulent diffusion and reactive phenomena near the turbulent/non-turbulent inteface
湍流/非湍流界面附近的高佩克莱特数湍流扩散和反应现象的阐明和建模
- 批准号:
18H01369 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Superstructures and turbulent heat and momentum transport in inclined low-Prandtl-number convection
倾斜低普朗特数对流中的上层结构和湍流热量和动量传输
- 批准号:
315773365 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Investigation of Fine-scale Scalar Mixing in High Reynolds Number Turbulent Jets
高雷诺数湍流射流中精细标量混合的研究
- 批准号:
15K05817 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishing universal scaling laws for pressure fluctuations in high Reynolds number rough wall turbulent boundary layers
建立高雷诺数粗糙壁湍流边界层中压力波动的通用标度定律
- 批准号:
1436088 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant