Parabolic methods for elliptic boundary value problems

椭圆边值问题的抛物线方法

基本信息

  • 批准号:
    DP180100431
  • 负责人:
  • 金额:
    $ 20.78万
  • 依托单位:
  • 依托单位国家:
    澳大利亚
  • 项目类别:
    Discovery Projects
  • 财政年份:
    2018
  • 资助国家:
    澳大利亚
  • 起止时间:
    2018-08-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

This project aims to uncover new results for second order nonlinear elliptic partial differential equations via the use of uniqueness properties of solutions for related nonlinear parabolic partial differential equations. This will build on theory for fully nonlinear equations developed over the last 30 years. The project expects to generate new knowledge in the theory that will guide future research and have direct impact to applications in optimal transport, geometric problems and more applied areas including image analysis and mathematical finance. The project will enhance Australia's international reputation for research in the field and train some of the next generation of mathematical analysts.
本项目旨在利用相关非线性抛物型偏微分方程解的唯一性性质,揭示二阶非线性椭圆型偏微分方程的新结果。 这将建立在过去30年来发展的完全非线性方程的理论基础上。该项目预计将在理论中产生新的知识,这些知识将指导未来的研究,并对最佳运输,几何问题和更多应用领域(包括图像分析和数学金融)的应用产生直接影响。该项目将提高澳大利亚在该领域研究的国际声誉,并培养一些下一代数学分析师。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prof James McCoy其他文献

Prof James McCoy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prof James McCoy', 18)}}的其他基金

Higher order curvature flow of curves and hypersurfaces
曲线和超曲面的高阶曲率流
  • 批准号:
    DP150100375
  • 财政年份:
    2015
  • 资助金额:
    $ 20.78万
  • 项目类别:
    Discovery Projects
New directions in geometric evolution equations
几何演化方程的新方向
  • 批准号:
    DP120100097
  • 财政年份:
    2012
  • 资助金额:
    $ 20.78万
  • 项目类别:
    Discovery Projects

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Analysis and Novel Finite Element Methods for Elliptic Equations with Complex Boundary Conditions
复杂边界条件椭圆方程的分析和新颖的有限元方法
  • 批准号:
    2208321
  • 财政年份:
    2022
  • 资助金额:
    $ 20.78万
  • 项目类别:
    Standard Grant
Global analysis of mathematical models with conservation law by semi-analytic methods using the elliptic functions
使用椭圆函数的半解析方法对具有守恒定律的数学模型进行全局分析
  • 批准号:
    22K13962
  • 财政年份:
    2022
  • 资助金额:
    $ 20.78万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Finite Element Methods for Elliptic Least-Squares Problems with Inequality Constraints
具有不等式约束的椭圆最小二乘问题的有限元方法
  • 批准号:
    2208404
  • 财政年份:
    2022
  • 资助金额:
    $ 20.78万
  • 项目类别:
    Standard Grant
Narrow-Stencil Numerical Methods for Approximating Nonlinear Elliptic Partial Differential Equations
逼近非线性椭圆偏微分方程的窄模板数值方法
  • 批准号:
    2111059
  • 财政年份:
    2021
  • 资助金额:
    $ 20.78万
  • 项目类别:
    Standard Grant
The study on nonlinear elliptic partial differential equations via variational and perturbation methods
非线性椭圆偏微分方程的变分法和摄动法研究
  • 批准号:
    20K03691
  • 财政年份:
    2020
  • 资助金额:
    $ 20.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Adaptive High-Order Quarklet Frame Methods for Elliptic Operator Equations
椭圆算子方程的自适应高阶 Quarklet 框架方法
  • 批准号:
    451355735
  • 财政年份:
    2020
  • 资助金额:
    $ 20.78万
  • 项目类别:
    Research Grants
Novel Finite Element Methods for Elliptic Distributed Optimal Control Problems
椭圆分布最优控制问题的新颖有限元方法
  • 批准号:
    1913035
  • 财政年份:
    2019
  • 资助金额:
    $ 20.78万
  • 项目类别:
    Standard Grant
Structure-Preserving Numerical Methods for Strongly Nonlinear Elliptic Partial Differential Equations
强非线性椭圆偏微分方程的保结构数值方法
  • 批准号:
    1818861
  • 财政年份:
    2018
  • 资助金额:
    $ 20.78万
  • 项目类别:
    Continuing Grant
New methods in multiplicative number theory applied to number fields, elliptic curves, modular forms, and other arithmetic data
乘法数论的新方法应用于数域、椭圆曲线、模形式和其他算术数据
  • 批准号:
    502433-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 20.78万
  • 项目类别:
    Postdoctoral Fellowships
New methods in multiplicative number theory applied to number fields, elliptic curves, modular forms, and other arithmetic data
乘法数论的新方法应用于数域、椭圆曲线、模形式和其他算术数据
  • 批准号:
    502433-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 20.78万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了