Efficient and robust algorithms for the design of manufacturable optical freeform surfaces and their experimental validation
用于可制造光学自由曲面设计及其实验验证的高效且稳健的算法
基本信息
- 批准号:259180742
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Refractive and reflective optical components, whose surfaces offer a much higher number of degrees of freedom in comparison with conventional lenses and reflectors (axially symmetric and cylindric spheres and aspheres), are subsumed under the term "freeform optics". For their computer-aided design, algorithms are used that compute the optical surfaces from the given source and target light densities and other boundary conditions. This project addresses the first interdisciplinary advancement of these algorithms on the mathematical as well as on the technical and optical side in order to make them available for engineering applications in complex optical systems.State of the art design algorithms do not offer satisfactory solutions to this problem even for a point light source, because neither do they meet production requirements, in particular, concerning the regularity of the surfaces, nor do they offer the possibility for the design of multiple surfaces (two lens surfaces, lens and reflector, etc.). Given the source intensity distribution none of the known methods can take a nonzero extent of the light source into account without employing an iterative correction.In preliminary work, the applicants have developed a method that generates for given point light sources smooth surfaces by rigorously modeling the underlying problem in terms of a Monge-Ampère equation. Furthermore, the method is capable of generating surfaces that produce highly complex target illuminations. Similar to optimal transport problems, the inverse reflector problem can be formulated as a second boundary value problem for the Monge-Ampère equation which is a strongly nonlinear second order partial differential equation subject to additional boundary conditions. In order to solve this problem numerically, a B-spline collocation method and a finite-difference method are used for mutual validation. Nested iteration methods are applied to ensure the convergence of the solver and to accelerate the calculations. The particularly challenging boundary condition is realized through a Picard-type iteration. Until now, no other solution algorithms are known for this boundary value problem.As part of the submitted project, the algorithms developed by the applicants are generalized to spatially extended light sources which are essential for real-life applications. Moreover, methods are developed that handle the design of optical systems with multiple surfaces. By combining both of these steps, a method shall be constructed that simultaneously handles arbitrarily bounded optical surfaces, multiple optical surfaces and spatially extended light sources. Besides correctness, further essential goals of the project are robustness, numerical efficiency and manufacturability of the calculated solutions.
折射和反射光学部件,其表面提供比传统透镜和反射器(轴对称和柱面球面和非球面)更多的自由度,被归入术语“自由形式光学”。对于它们的计算机辅助设计,使用了根据给定源和目标光密度以及其他边界条件来计算光学表面的算法。本项目致力于这些算法在数学以及技术和光学方面的第一次跨学科进展,以使它们可用于复杂光学系统的工程应用。最新的设计算法即使对于点光源也不能提供令人满意的解决方案,因为它们既不满足生产要求,特别是关于表面的正则性,也不提供设计多个表面(两个透镜表面、透镜和反射器等)的可能性。在给定源强度分布的情况下,任何已知方法都不能在不采用迭代校正的情况下考虑光源的非零范围。在初步工作中,申请人已经开发了一种方法,该方法通过根据Monge-Ampère方程对潜在问题进行严格建模来为给定点光源生成平滑表面。此外,该方法能够生成产生高度复杂的目标照明的表面。与最优输运问题类似,反射面反问题可以表示为Monge-Ampère方程的第二边值问题,Monge-Ampère方程是一个带有附加边界条件的强非线性二阶偏微分方程组。为了对这一问题进行数值求解,采用了B-样条配点法和有限差分法进行了相互验证。采用嵌套迭代法保证了求解器的收敛,加快了计算速度。特别具有挑战性的边界条件是通过Picard类迭代实现的。作为提交的项目的一部分,申请者开发的算法被推广到对现实生活应用至关重要的空间扩展光源。此外,还发展了处理多表面光学系统设计的方法。通过将这两个步骤结合起来,将构建一种同时处理任意边界光学表面、多个光学表面和空间扩展光源的方法。除了正确性之外,该项目的另一个基本目标是计算解的稳健性、数值效率和可制造性。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Free-form optics for non-idealized light sources in 3D: a phase-space approach
3D 中非理想化光源的自由曲面光学:相空间方法
- DOI:10.1117/12.2311995
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:A. Völl;R. Wester;P. Buske;M. Berens;J. Stollenwerk;P.Loosen
- 通讯作者:P.Loosen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Wolfgang Dahmen其他文献
Professor Dr. Wolfgang Dahmen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Wolfgang Dahmen', 18)}}的其他基金
Optimal preconditioners of spectral Discontinuous Galerkin methods for elliptic boundary value problems
椭圆边值问题谱间断Galerkin方法的最优预处理器
- 批准号:
218348188 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Numerical fluid-structure coupling schemes for high-frequency surface motion
高频表面运动的数值流固耦合方案
- 批准号:
202199312 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Units
Mathematical modelling of grinding wheel structures
砂轮结构的数学建模
- 批准号:
180925066 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Numerical and harmonic analysis of problems with anisotropic features, directional representation systems and the solution of transport dominated problems, in particular, for parameter dependent high dimensional versions
各向异性特征问题的数值和调和分析、方向表示系统以及传输主导问题的解决方案,特别是参数相关的高维版本
- 批准号:
79152622 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Priority Programmes
Strömungen in Medien mit nichtkonvexer Zustandsgleichung
具有非凸状态方程的介质中的流动
- 批准号:
5381971 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Priority Programmes
Prozeßüberwachung durch wavelet-basierte Echtzeitoptimierung
通过基于小波的实时优化进行过程监控
- 批准号:
5252044 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
半定松弛与非凸二次约束二次规划研究
- 批准号:11271243
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
基于复合编码脉冲串的水下主动隐蔽性探测新方法研究
- 批准号:61271414
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
民航客运网络收益管理若干问题的研究
- 批准号:60776817
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:联合基金项目
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Robust and Efficient Learning of High-Resolution Brain MRI Reconstruction from Small Referenceless Data
从小型无参考数据中稳健而高效地学习高分辨率脑 MRI 重建
- 批准号:
10584324 - 财政年份:2023
- 资助金额:
-- - 项目类别:
An Explainable Unified AI Strategy for Efficient and Robust Integrative Analysis of Multi-omics Data from Highly Heterogeneous Multiple Studies
一种可解释的统一人工智能策略,用于对来自高度异质性多项研究的多组学数据进行高效、稳健的综合分析
- 批准号:
10729965 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Robust and efficient statistical learning algorithms with applications in actuarial science
稳健高效的统计学习算法在精算科学中的应用
- 批准号:
RGPIN-2020-07064 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Exploring Efficient Automated Design Choices for Robust Machine Learning Algorithms
探索稳健的机器学习算法的高效自动化设计选择
- 批准号:
2748823 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Robust and efficient statistical learning algorithms with applications in actuarial science
稳健高效的统计学习算法在精算科学中的应用
- 批准号:
RGPIN-2020-07064 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CAREER: Robust and Efficient Algorithms for Statistical Estimation and Inference
职业:用于统计估计和推理的稳健且高效的算法
- 批准号:
2045068 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Robust and efficient statistical learning algorithms with applications in actuarial science
稳健高效的统计学习算法在精算科学中的应用
- 批准号:
RGPIN-2020-07064 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Robust and efficient statistical learning algorithms with applications in actuarial science
稳健高效的统计学习算法在精算科学中的应用
- 批准号:
DGECR-2020-00372 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Launch Supplement
FRG: Collaborative Research: Robust, Efficient, and Private Deep Learning Algorithms
FRG:协作研究:稳健、高效、私密的深度学习算法
- 批准号:
1952339 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Robust, Efficient, and Private Deep Learning Algorithms
FRG:协作研究:稳健、高效、私密的深度学习算法
- 批准号:
1952644 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




