FRG: Collaborative Research: Robust, Efficient, and Private Deep Learning Algorithms
FRG:协作研究:稳健、高效、私密的深度学习算法
基本信息
- 批准号:1952644
- 负责人:
- 金额:$ 14.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops robust, accurate, and efficient next-generation deep learning algorithms with data privacy and theoretical guarantees for solving challenging artificial intelligence (AI) problems. The methods will have robustness to adversarial attacks with theoretical guarantees. The project will push artificial intelligence gains in performance and privacy to mobile devices. A broad range of applications includes autonomous driving, drug and material discovery, medical treatment planning, national defense, privacy-preserving machine learning at the edge, federated learning, and also blockchain. Moreover, the developed tools will significantly scale the existing scientific simulations to ultra-large scale and high-dimensional scenarios. This project will partially support one graduate student per year at each campus.Our approach toward trustworthy deep learning is theoretically principled by modern partial differential equations and optimization algorithms and theories. The project involves new algorithmic and theoretical techniques to tackle graph representation in high-dimensional non-convex, non-smooth AI settings. In particular, the project will study (1) developing adversarial robust deep learning algorithms and their theoretical foundations; (2) improving the accuracy of deep learning leveraging new stochastic optimization and principled neural network unit design assisted neural architecture search; (3) advancing deep neural networks compression with algorithms and hardware co-design; (4) designing new data privacy mechanisms to optimally tradeoff between utility and privacy; (5) inventing new quantitative analysis tools to decipher the mysteries of deep learning theoretical challenges; (6) quantifying uncertainties of sophisticated deep learning algorithms. The project trains a diverse body of graduate and undergraduate students at UC Irvine, UCLA, and University of Utah through collaborative education and research activities in applied mathematics, computer science, data science, and general biological, physical, and sociological disciplines.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目开发稳健、准确和高效的下一代深度学习算法,具有数据隐私和解决具有挑战性的人工智能(AI)问题的理论保证。该方法在理论上保证了对敌意攻击的稳健性。该项目将把人工智能在性能和隐私方面的进步推广到移动设备上。广泛的应用包括自动驾驶、药物和材料发现、医疗规划、国防、边缘隐私保护机器学习、联邦学习,以及区块链。此外,开发的工具将极大地将现有的科学模拟扩展到超大规模和高维场景。这个项目将部分支持每个校区每年一名研究生。我们对值得信赖的深度学习的方法是以现代偏微分方程组和优化算法和理论为理论基础的。该项目涉及新的算法和理论技术,以解决高维非凸、非光滑人工智能环境中的图形表示。特别是,该项目将研究(1)开发对抗性稳健的深度学习算法及其理论基础;(2)利用新的随机优化和原则性神经网络单元设计辅助神经体系结构搜索来提高深度学习的准确性;(3)通过算法和硬件共同设计来推进深度神经网络压缩;(4)设计新的数据隐私机制,以优化效用和隐私之间的权衡;(5)发明新的量化分析工具,以破解深度学习理论挑战的奥秘;(6)量化复杂深度学习算法的不确定性。该项目通过合作教育和研究活动,在加州大学欧文分校、加州大学洛杉矶分校和犹他大学培养了一批不同的研究生和本科生。该奖项反映了NSF的法定使命,通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lorentzian peak sharpening and sparse blind source separation for NMR spectroscopy
- DOI:10.1007/s11760-021-02002-4
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:Yuanchang Sun;J. Xin
- 通讯作者:Yuanchang Sun;J. Xin
Synchronized Front Propagation and Delayed Flame Quenching in Strain G-Equation and Time-Periodic Cellular Flows
应变 G 方程和时间周期细胞流中的同步前沿传播和延迟火焰淬火
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0.7
- 作者:Liu, Yu-Yu;Xin, Jack
- 通讯作者:Xin, Jack
Feature Affinity Assisted Knowledge Distillation and Quantization of Deep Neural Networks on Label-Free Data
- DOI:10.1109/access.2023.3297890
- 发表时间:2023-02
- 期刊:
- 影响因子:3.9
- 作者:Zhijian Li;Biao Yang;Penghang Yin;Y. Qi;J. Xin
- 通讯作者:Zhijian Li;Biao Yang;Penghang Yin;Y. Qi;J. Xin
Structured Sparsity of Convolutional Neural Networks via Nonconvex Sparse Group Regularization
- DOI:10.3389/fams.2020.529564
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:Kevin Bui;Fredrick Park;Shuai Zhang;Y. Qi;J. Xin
- 通讯作者:Kevin Bui;Fredrick Park;Shuai Zhang;Y. Qi;J. Xin
Convergence of Hyperbolic Neural Networks Under Riemannian Stochastic Gradient Descent
黎曼随机梯度下降下双曲神经网络的收敛性
- DOI:10.1007/s42967-023-00302-9
- 发表时间:2023
- 期刊:
- 影响因子:1.6
- 作者:Whiting, Wes;Wang, Bao;Xin, Jack
- 通讯作者:Xin, Jack
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jack Xin其他文献
A structure-preserving scheme for computing effective diffusivity and anomalous diffusion phenomena of random flows
计算随机流的有效扩散率和反常扩散现象的结构保持方案
- DOI:
10.48550/arxiv.2405.19003 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tan Zhang;Zhongjian Wang;Jack Xin;Zhiwen Zhang - 通讯作者:
Zhiwen Zhang
Finite Element Computation of KPP Front Speeds in Cellular and Cat#39;s Eye Flows
Cellular 和 Cat 中 KPP 前沿速度的有限元计算
- DOI:
- 发表时间:
- 期刊:
- 影响因子:2.5
- 作者:
沈丽华;Jack Xin;周爱辉 - 通讯作者:
周爱辉
Learning Sparse Neural Networks via \ell _0 and T \ell _1 by a Relaxed Variable Splitting Method with Application to Multi-scale Curve Classification
通过松弛变量分裂方法通过 ell _0 和 T ell _1 学习稀疏神经网络并应用于多尺度曲线分类
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Fanghui Xue;Jack Xin - 通讯作者:
Jack Xin
Design projects motivated and informed by the needs of severely disabled autistic children
设计项目以严重残疾自闭症儿童的需求为动力和信息
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
S. Warren;P. Prakash;D. Thompson;B. Natarajan;Charles Carlson;Kim Fowler;Edwin Brokesh;Jack Xin;W. Piersel;Janine Kesterson;Steve Stoffregen - 通讯作者:
Steve Stoffregen
Three $$l_1$$ Based Nonconvex Methods in Constructing Sparse Mean Reverting Portfolios
- DOI:
10.1007/s10915-017-0578-5 - 发表时间:
2017-10-20 - 期刊:
- 影响因子:3.300
- 作者:
Xiaolong Long;Knut Solna;Jack Xin - 通讯作者:
Jack Xin
Jack Xin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jack Xin', 18)}}的其他基金
Deep Particle Algorithms and Advection-Reaction-Diffusion Transport Problems
深层粒子算法与平流反应扩散传输问题
- 批准号:
2309520 - 财政年份:2023
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
Computational and Mathematical Studies of Compression and Distillation Methods for Deep Neural Networks and Applications
深度神经网络压缩和蒸馏方法的计算和数学研究及应用
- 批准号:
2151235 - 财政年份:2022
- 资助金额:
$ 14.02万 - 项目类别:
Continuing Grant
Computational and Mathematical Studies of Complexity Reduction Methods for Deep Neural Networks and Applications
深度神经网络复杂度降低方法的计算和数学研究及应用
- 批准号:
1854434 - 财政年份:2019
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Robust, Accurate and Efficient Graph-Structured RNN for Spatio-Temporal Forecasting and Anomaly Detection
合作研究:ATD:用于时空预测和异常检测的鲁棒、准确和高效的图结构 RNN
- 批准号:
1924548 - 财政年份:2019
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Foundations of Nonconvex Problems in BigData Science and Engineering: Models, Algorithms, and Analysis
BIGDATA:协作研究:F:大数据科学与工程中非凸问题的基础:模型、算法和分析
- 批准号:
1632935 - 财政年份:2016
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
Theory and Algorithms of Transformed L1 Minimization with Applications in Data Science
变换 L1 最小化的理论和算法及其在数据科学中的应用
- 批准号:
1522383 - 财政年份:2015
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
Reaction-Diffusion Front Speeds in Chaotic and Stochastic Flows
混沌和随机流中的反应扩散前沿速度
- 批准号:
1211179 - 财政年份:2012
- 资助金额:
$ 14.02万 - 项目类别:
Continuing Grant
ATD: Blind and Template Assisted Source Separation Algorithms with Applications to Spectroscopic Data
ATD:盲和模板辅助源分离算法及其在光谱数据中的应用
- 批准号:
1222507 - 财政年份:2012
- 资助金额:
$ 14.02万 - 项目类别:
Continuing Grant
ADT: Sparse Blind Separation Algorithms of Spectral Mixtures and Applications
ADT:混合光谱的稀疏盲分离算法及应用
- 批准号:
0911277 - 财政年份:2009
- 资助金额:
$ 14.02万 - 项目类别:
Continuing Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 14.02万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 14.02万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 14.02万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 14.02万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 14.02万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 14.02万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 14.02万 - 项目类别:
Continuing Grant