Thermal Transport of Novel Two-dimensional Silicon

新型二维硅的热传输

基本信息

项目摘要

Graphene, a two-dimensional atomic thin honeycomb lattice, exhibits numerous striking physical properties, and can, in principle, be considered as an elementary building block for all carbon allotropes. Ever since the recent developments in 2004, the field of graphene research took off rapidly. These developments in the science of graphene prompted an unprecedented surge of activity and demonstration of new physical phenomena. Despite its success, graphene still faces some severe problems in its nature of semi-metal or zero band-gap semiconductor and its incompatibility with the current Si-based technology. Given that the honeycomb geometry is related to some of the exceptional properties of graphene, there is strong motivation to investigate whether changing carbon to other atom type might give rise to novel physical phenomena as well. An intuitive idea is to study its analog - silicene. Acutally, silicene, the Si counterpart of graphene, can solve the above problems smoothly and thus has received intense interest lately. Given the fact that thermal transport plays a critical role in many applications such as heat dissipartion in nanoelectronics and thermoelectric energy conversion, there has been an emerging demand in characterizing thermal (mainly phonons) transport property of silicene structures. Moreover, our preliminary results have shown that silicene exhibits a few novel thermal transport properties, which are fundamentally different from that of graphene, despite the similarity of their honeycomb lattice structure. Therefore, the abnormal physical property, primarily stemming from its unique low buckling structure, may enable silicene to open up entirely new possibilities for revolutionary electronic devices and energy conversion materials. With this state of the art, the current proposal aims to perform theoretical investigations of thermal transport of silicene nanostructures in various forms. Heat transfer in such structures is not only directly relevant to optimizing the relevant device performance such as improved thermal management for nanoelectronics and thermoelectric energy conversion efficiency, but also is a scientifically fundamental problem for many other similar two-dimensional systems. The overall objective of this proposal is to advance the fundamentals underlying the thermal transport of silicene structures as novel two-dimensional material for emerging technologies. Closely linked and interdependent classical molecular dynamics simulations and ab initio based nonequilibrium Greens function and combined anharmonic lattice dynamics and Boltzmann transport equation are proposed as approaches to this end. The investigation is likely to provide a major advancement to the fundamental understanding of thermal transport mechanism of silicene and more broadly two-dimensional materials, with the potential to make a clear contribution to development of high performance nanoelectronics and the energy needs of the future.
石墨烯是一种二维原子薄蜂窝晶格,具有许多惊人的物理性质,原则上可以被认为是所有碳同素异形体的基本构建块。自从2004年的最新进展以来,石墨烯研究领域迅速起飞。石墨烯科学的这些发展促进了前所未有的活动激增和新物理现象的展示。尽管取得了成功,但石墨烯仍然面临着一些严重的问题,如半金属或零带隙半导体的性质以及与当前Si基技术的不兼容性。考虑到蜂窝几何结构与石墨烯的一些特殊性质有关,研究将碳改变为其他原子类型是否也可能引起新的物理现象有很强的动机。一个直观的想法是研究它的类似物-硅烯。硅烯是石墨烯的Si对应物,可以很好地解决上述问题,因此最近受到了人们的极大关注。由于热输运在许多应用中起着关键作用,例如纳米电子学中的散热和热电能量转换,因此对硅烯结构的热(主要是声子)输运性质的表征有着新兴的需求。此外,我们的初步研究结果表明,硅烯表现出一些新的热传输性能,这是根本不同的石墨烯,尽管它们的蜂窝晶格结构的相似性。因此,主要源于其独特的低屈曲结构的异常物理性质可能使硅烯为革命性的电子器件和能量转换材料开辟全新的可能性。利用这种现有技术,目前的建议旨在对各种形式的硅烯纳米结构的热传输进行理论研究。这种结构中的热传递不仅与优化相关器件性能(例如,改善纳米电子学的热管理和热电能量转换效率)直接相关,而且对于许多其他类似的二维系统也是科学上的基本问题。该提案的总体目标是推进硅烯结构作为新兴技术的新型二维材料的热传输的基本原理。紧密联系和相互依存的经典分子动力学模拟和从头算为基础的非平衡格林函数和相结合的非谐晶格动力学和玻尔兹曼输运方程,提出了为此目的的方法。这项研究可能会为硅烯和更广泛的二维材料的热传输机制的基本理解提供重大进展,并有可能为高性能纳米电子学的发展和未来的能源需求做出明确的贡献。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Resonant bonding driven giant phonon anharmonicity and low thermal conductivity of phosphorene
  • DOI:
    10.1103/physrevb.94.165445
  • 发表时间:
    2016-10-26
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Qin, Guangzhao;Zhang, Xiaoliang;Hu, Ming
  • 通讯作者:
    Hu, Ming
Bilateral substrate effect on the thermal conductivity of two-dimensional silicon.
  • DOI:
    10.1039/c4nr06523a
  • 发表时间:
    2015-03
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Xiaoliang Zhang;Hua Bao;Ming Hu
  • 通讯作者:
    Xiaoliang Zhang;Hua Bao;Ming Hu
Lone-pair electrons induced anomalous enhancement of thermal transport in strained planar two-dimensional materials
  • DOI:
    10.1016/j.nanoen.2018.05.040
  • 发表时间:
    2018-08-01
  • 期刊:
  • 影响因子:
    17.6
  • 作者:
    Qin, Guangzhao;Qin, Zhenzhen;Hu, Ming
  • 通讯作者:
    Hu, Ming
Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain
通过机械应变实现单层硅烯晶格热导率的大可调性
  • DOI:
    10.1103/physrevb.93.075404
  • 发表时间:
    2015-12
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Eric Germaneau;Guangzhao Qin;Ming Hu;Hua Bao
  • 通讯作者:
    Hua Bao
Thermal Transport in Phosphorene.
  • DOI:
    10.1002/smll.201702465
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    G. Qin;Ming Hu
  • 通讯作者:
    G. Qin;Ming Hu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Ming Hu其他文献

Professor Dr. Ming Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
Intraflagellar Transport运输纤毛蛋白的分子机理
  • 批准号:
    31371354
  • 批准年份:
    2013
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
苜蓿根瘤菌(S.meliloti)四碳二羧酸转运系统 (Dicarboxylate transport system, Dct系统)跨膜信号转导机理
  • 批准号:
    30870030
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Advancing Understanding of Super-Coarse and Giant Dust Particles via Novel Measurements of Emission and Transport
通过新颖的排放和传输测量方法增进对超粗和巨型灰尘颗粒的了解
  • 批准号:
    2336111
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Single-Nuclei Sequencing Whole Aquatic Plants to Reveal Novel Nutrient Transport Mechanisms
对整个水生植物进行单核测序,揭示新的养分运输机制
  • 批准号:
    BB/Z514809/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Develop the novel targets and immunotherapy-combination agents through targeting nuclear transport receptor
以核转运受体为靶点开发新靶点和免疫治疗联合药物
  • 批准号:
    24K13116
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Heat Transport in Novel 3D Patterned Nanostructures
新型 3D 图案化纳米结构中的热传输
  • 批准号:
    EP/X012735/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Heat Transport in Novel 3D Patterned Structures
新型 3D 图案结构中的热传输
  • 批准号:
    EP/X012840/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Uncovering the 'Manchette motor': A novel transport system for sperm development.
揭秘“曼切特马达”:一种用于精子发育的新型运输系统。
  • 批准号:
    23K06315
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel Thermal Transport Phenomena in Quantum Materials
量子材料中的新型热传输现象
  • 批准号:
    2317618
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Realization of efficient intramolecular hopping transport in long pi-conjugated systems and its-based novel functions
长π共轭体系中高效分子内跳跃传输的实现及其新功能
  • 批准号:
    23K17947
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Novel tracers for in vivo studies of waste transport by fluid flows in the brain
用于脑内液体流动废物运输体内研究的新型示踪剂
  • 批准号:
    10732612
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Heat Transport in Novel 3D Patterned Nanostructures
新型 3D 图案化纳米结构中的热传输
  • 批准号:
    EP/X013375/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了