Computer-Aided Mapping of Hyper- and Multi-Spectral Data

超光谱和多光谱数据的计算机辅助绘图

基本信息

项目摘要

Computer aided mapping of multi-spectral and hyper-spectral data is an important application in planetary science. The light reflected from a planetary surface is acquired in many channels across a broad range of wavelengths. This allows for analyzing physical and geological surface properties, e.g., in order to determine the occurrence of certain minerals or rocks or to explore planets for future space missions. For this purpose, large databases of multi-spectral and hyper-spectral images are commonly analyzed by experts mostly in a manual fashion. The objective of this project is to support such analyses with automated machine learning methods. A major challenge lies in the lack of annotated training material which is required in order to estimate classifiers from sample data. For this reason, it is proposed in the project to follow an active learning strategy. Image regions are clustered in an unsupervised manner before individual annotations are requested from the expert. The annotations correspond to prototypical regions and can be propagated to similar and so far unknown regions. Based on the increasing amount of annotated samples, deep neural networks are trained in order to automate the mapping process further. Modeling the uncertainty of the automated decisions is one of the most important aspects in the project. The capabilities of the machine learning methods become transparent and improve the interpretability of the results for the expert. Another very important aspect is the representation of image regions. Instead of an assignment to only a single class in the classification process, regions are represented in terms of attributes which characterize a region with respect to selected properties. Classes of regions are recognized by their attributes. This even allows for recognizing classes which are unseen in the training data set. The methods will be evaluated on multi-spectral and hyper-spectral images as well as semantic segmentation benchmarks considered in the computer vision community. A qualitative analysis is performed by a planetary geologist who evaluates the support provided by the methods in the exploration of a new data set.
多光谱和高光谱数据的计算机辅助制图是行星科学中的一个重要应用。从行星表面反射的光是通过许多通道在很宽的波长范围内获得的。这允许分析物理和地质表面性质,例如,为了确定某些矿物或岩石的出现,或为未来的空间任务探索行星。为此,专家通常以手工方式分析多光谱和高光谱图像的大型数据库。这个项目的目标是用自动化的机器学习方法来支持这种分析。一个主要的挑战在于缺乏带注释的训练材料,这是根据样本数据估计分类器所必需的。因此,在项目中建议采用主动学习策略。在专家要求单独的注释之前,以无监督的方式对图像区域进行聚类。注释对应于原型区域,并且可以传播到相似且迄今未知的区域。基于标注样本数量的增加,训练深度神经网络以进一步实现映射过程的自动化。对自动化决策的不确定性进行建模是项目中最重要的方面之一。机器学习方法的能力变得透明,并提高了专家对结果的可解释性。另一个非常重要的方面是图像区域的表示。在分类过程中,区域不是只分配给一个类,而是用属性来表示,这些属性根据所选的属性来表征一个区域。区域的类别是通过其属性来识别的。这甚至允许识别训练数据集中不可见的类。这些方法将在多光谱和超光谱图像以及计算机视觉界考虑的语义分割基准上进行评估。定性分析由行星地质学家执行,他在新数据集的探索中评估方法所提供的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Gernot A. Fink其他文献

Professor Dr.-Ing. Gernot A. Fink的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Gernot A. Fink', 18)}}的其他基金

CuKa -- Computer-aided cuneiform analysis Cross-repository and cross-domain analysis of cuneiform tablets for collaborative, user-centered operationalization of philological working methods
CuKa——计算机辅助楔形文字分析 楔形文字板的跨存储库和跨域分析,用于协作、以用户为中心的语言学工作方法的操作化
  • 批准号:
    405966540
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research data and software (Scientific Library Services and Information Systems)
Transfer Learning for Human Activity Recognition in Logistics
物流中人类活动识别的迁移学习
  • 批准号:
    316862460
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Vidoebasiertes Lesen von Texten und handschriftlichen Präsentationsnotizen am Whiteboard
基于视频的文本阅读和白板上手写的演示笔记
  • 批准号:
    42000795
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Automatic recognition of unconstrained handwriting based on pen trajectory data recovered from image sequences
基于从图像序列恢复的笔轨迹数据的无约束手写体的自动识别
  • 批准号:
    5210852
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Combining Image and Graph-based Neural Networks for Handwriting Recognition
结合基于图像和图形的神经网络进行手写识别
  • 批准号:
    528122871
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

CAREER: SmartCAD: Shaping The Next Revolution in Computer-Aided Design
职业生涯:SmartCAD:塑造计算机辅助设计的下一场革命
  • 批准号:
    2339249
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference: 10th International Conference on Foundations of Computer Aided Process Design (FOCAPD-2024): Designing for the Future Digital and Carbon Neutral Economy
会议:第十届计算机辅助过程设计基础国际会议(FOCAPD-2024):为未来数字和碳中和经济设计
  • 批准号:
    2413592
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Catalyst aided regeneration of nonaqueous absorbent for low temperature CO2 capture
用于低温二氧化碳捕获的非水吸收剂的催化剂辅助再生
  • 批准号:
    EP/Y026527/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
SBIR Phase I: Methods for Embedding User Data into 3D Generative AI Computer-aided-Design Models
SBIR 第一阶段:将用户数据嵌入 3D 生成式 AI 计算机辅助设计模型的方法
  • 批准号:
    2335491
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
  • 批准号:
    2312229
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SBIR Phase II: Computer Aided Design Toolkit for Desktop Digital Fabrication of Circuits on Paper
SBIR 第二阶段:用于纸上电路桌面数字制造的计算机辅助设计工具包
  • 批准号:
    2233004
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Computer-aided design and development of isoform selective inhibitors of Casein Kinase 1
酪蛋白激酶 1 异构体选择性抑制剂的计算机辅助设计和开发
  • 批准号:
    10629703
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
  • 批准号:
    10585553
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Every Datapoint Counts: Atmosphere-aided Flare Studies in the Rubin era
每个数据点都很重要:鲁宾时代的大气辅助耀斑研究
  • 批准号:
    2308016
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Computer-aided detection chest X-ray findings in people with culture-confirmed pulmonary tuberculosis versus non-tuberculous mycobacteria infection in a low-TB incidence setting
低结核病发病率环境中经培养确诊的肺结核患者与非结核分枝杆菌感染患者的计算机辅助检测胸部 X 线检查结果
  • 批准号:
    481014
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了