Combining Image and Graph-based Neural Networks for Handwriting Recognition
结合基于图像和图形的神经网络进行手写识别
基本信息
- 批准号:528122871
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This proposal aims to develop models, data synthesis and training methods for document analysis tasks such as classification or retrieval that allow the application of deep learning models without the need for manually created annotations. Especially, considering historic documents or low resource language the heavy demand for labeled data hinders the application of learning-based methodology. A key factor in the proposed project is the exploitation of the structural nature of handwriting. In Addition to the visual appearance, the underlying structure can represented as a graph. Recent developments in geometric deep learning allow to integrate this structural element on the level of model design. Additionally, explicitly modeling the geometric component serves as a form of regularization, increasing adaptability and the generalization capabilities of the developed models. Training of a model combining visual and geometrical information is then performed with as little supervision as possible. Therefore, data synthesis approaches will be developed that also include structural representations. This project extends the state-of-the art in deep learning based document analysis by developing methods that explicitly model the geometric components of handwriting. The resulting reduction of training data demand opens up a diverse set of application areas and tasks.
这项提议旨在为分类或检索等文件分析任务开发模型、数据合成和培训方法,以便在不需要手动创建注释的情况下应用深度学习模型。特别是,考虑到历史文献或低资源语言,对标记数据的大量需求阻碍了基于学习的方法的应用。拟议项目中的一个关键因素是对笔迹结构性质的开发。除了视觉外观外,底层结构还可以表示为图形。几何深度学习的最新发展使得在模型设计层面上整合这一结构元素成为可能。此外,显式建模几何组件作为正则化的一种形式,增加了所开发模型的适应性和泛化能力。然后,在尽可能少的监督下执行组合视觉和几何信息的模型的训练。因此,将开发也包括结构表示的数据合成方法。这个项目通过开发显式建模手写几何成分的方法,扩展了基于深度学习的文档分析的最新技术。随之而来的培训数据需求的减少打开了一系列不同的应用领域和任务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Gernot A. Fink其他文献
Professor Dr.-Ing. Gernot A. Fink的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Gernot A. Fink', 18)}}的其他基金
CuKa -- Computer-aided cuneiform analysis Cross-repository and cross-domain analysis of cuneiform tablets for collaborative, user-centered operationalization of philological working methods
CuKa——计算机辅助楔形文字分析 楔形文字板的跨存储库和跨域分析,用于协作、以用户为中心的语言学工作方法的操作化
- 批准号:
405966540 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research data and software (Scientific Library Services and Information Systems)
Transfer Learning for Human Activity Recognition in Logistics
物流中人类活动识别的迁移学习
- 批准号:
316862460 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Computer-Aided Mapping of Hyper- and Multi-Spectral Data
超光谱和多光谱数据的计算机辅助绘图
- 批准号:
269661170 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Vidoebasiertes Lesen von Texten und handschriftlichen Präsentationsnotizen am Whiteboard
基于视频的文本阅读和白板上手写的演示笔记
- 批准号:
42000795 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Automatic recognition of unconstrained handwriting based on pen trajectory data recovered from image sequences
基于从图像序列恢复的笔轨迹数据的无约束手写体的自动识别
- 批准号:
5210852 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
基于CE-3及IMAGE卫星地球等离子体层EUV探测数据的反演研究
- 批准号:41904148
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
Raw-Image微小物体高精度位姿测量法
- 批准号:61105029
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Object Recognition by using Deep Neural Networks for Graph Stractured Descriptions of Image Features and Aspect Views
使用深度神经网络进行图像特征和方面视图的图结构化描述的对象识别
- 批准号:
23K11175 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integration of graph signal processing and hyperspectral image processing
图信号处理和高光谱图像处理的集成
- 批准号:
21K21312 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Graph Convolutional Neural Networks for Medical Image Analysis
用于医学图像分析的图卷积神经网络
- 批准号:
2270805 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship
Image recognition using sparse graph neural networks and its application
稀疏图神经网络图像识别及其应用
- 批准号:
18K11380 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast and memory-less multi modality image matching based on higher order graph matching
基于高阶图匹配的快速无记忆多模态图像匹配
- 批准号:
16K16087 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development of analytical system for soccer play by means of image processing and graph theory
利用图像处理和图论开发足球比赛分析系统
- 批准号:
26560357 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
RI: Small: Endowing Graph-Based Image Segmentation with Global 'Advice': Applications to Diffusion Tensor Images
RI:小:为基于图的图像分割赋予全局“建议”:在扩散张量图像中的应用
- 批准号:
1116584 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Image manipulations using graph cuts and gradient-space operations
使用图形切割和梯度空间操作进行图像处理
- 批准号:
382786-2009 - 财政年份:2009
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
CAREER: Generalized Image Understanding with Probabilistic Ontologies and Dynamic Adaptive Graph Hierarchies
职业:利用概率本体论和动态自适应图层次结构进行广义图像理解
- 批准号:
0845282 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Feature extraction for biometric image using extended relational graph and neural network approach
使用扩展关系图和神经网络方法提取生物特征图像
- 批准号:
19560403 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)