Motivic iterated integrals and integral points
Motivic 迭代积分和积分点
基本信息
- 批准号:269688481
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let S be an open subscheme of Spec Z and let X be an S-model of a hyperbolic curve. In the last decade, Minhyong Kim has developed a new approach to the study of integral points which uses Deligne's theory of the unipotent fundamental group to construct certain subsets X(Zp)_n of the set of Z_p-points which contain X(S) and are conjectured to converge to X(S) as n grows. In the special case of the punctured line, the unipotent fundamental group is known to be motivic, opening the door to motivic methods. Our main goal in this project is to use Goncharov's theory of motivic iterated integrals, as well as methods developed by Francis Brown, to construct an algorithm for computing the sets X(Z_p)_n for the thrice punctured line over Q, as well as for more general curves over more general bases.
设S是Spec Z的开子概型,X是双曲曲线的S-模型.在过去的十年中,Minhyong Kim发展了一种研究整点的新方法,它利用Deligne的幂幺基本群理论构造了包含X(S)的Z_p-点集的某些子集X(Z_p)_n,并证明了这些子集X(Z_p)_n随着n的增长收敛到X(S)。在穿孔线的特殊情况下,幂幺基本群被称为motivic,为motivic方法打开了大门。我们的主要目标是利用Goncharov的motivic迭代积分理论,以及弗朗西斯Brown的方法,构造一个算法来计算Q上三次穿孔线的集合X(Z_p)_n,以及更一般基上更一般曲线的集合X(Z_p)_n。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Ishai Dan-Cohen其他文献
Dr. Ishai Dan-Cohen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Ishai Dan-Cohen', 18)}}的其他基金
Explicit Chabauty-Kim theory for the thrice punctured line
三次穿刺线的显式 Chabauty-Kim 理论
- 批准号:
239470564 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
Validated numerics for Iterated Function Schemes, Dynamical Systems and Random Walks
迭代函数方案、动力系统和随机游走的经过验证的数值
- 批准号:
EP/W033917/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Overlapping iterated function systems: New approaches and breaking the super-exponential barrier
重叠迭代函数系统:新方法和打破超指数障碍
- 批准号:
EP/W003880/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
The Geometry of Iterated Function Systems with Overlaps
具有重叠的迭代函数系统的几何
- 批准号:
567958-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Algebro-geometric study of iterated Frobenius direct images on del Pezzo surfaces in positive characteristic
del Pezzo 表面正特征迭代 Frobenius 直接像的代数几何研究
- 批准号:
21K03157 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Geometry of Iterated Function Systems with Overlaps
具有重叠的迭代函数系统的几何
- 批准号:
2448204 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
Resilience in the Facility Location Problem: Theory and Practice
设施选址问题的弹性:理论与实践
- 批准号:
20K11947 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Investigation into the Application of Iterated-Local-Search for Combinatorial Optimisation
迭代局部搜索在组合优化中的应用研究
- 批准号:
2297305 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship
A study on periods through enhanced zeta values and iterated integrals
通过增强 zeta 值和迭代积分研究周期
- 批准号:
19J00835 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Towards broadband multicomponent seismology and practical iterated inversion
走向宽带多分量地震学和实用迭代反演
- 批准号:
461179-2013 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Collaborative Research and Development Grants
Locally homogeneous Kaehler manifolds and Transformation groups
局部齐次凯勒流形和变换群
- 批准号:
18K03284 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)