Generation and application of strongly squeezed vacuum states of light
强压缩真空光态的产生及应用
基本信息
- 批准号:269638877
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Squeezed vacuum states of light have been used in a variety of proof-of-principle experiments to reduce the photon counting noise (shot noise). The first long-term application of squeezed-light in quantum metrology has been ongoing since more than two years now in the gravitational wave detector GEO600, Hannover, Germany. This successful squeezed-light application has proven it´s general importance but also indicates the demand for higher generated squeezing levels produced in a less complex and therefore more reliable squeezed-light source setup.This project proposes the generation of squeezed vacuum states of light at a wavelength of 1064nm in a novel standing-wave doubly-resonant squeezing resonator. This topology is expected to provide unprecedented high squeezing levels ranging from audio-band frequencies up to MHz-sideband frequencies with a significantly reduced number of optical components required for the strong squeezing generation. As a consequence, a high reliability of the proposed squeezed light source seems realistic. Furthermore, we propose the application of the generated strongly squeezed states to two important aspects of non-classical laser interferometry. Firstly, the strongly squeezed states will be employed to determine the absolute quantum efficiency of photo diodes in a direct measurement. The precision of this measurement technique based non-classical light will beat the classical (relative) measurement accuracy and will give important insights for a high detection efficiency of squeezed light in many applications. Secondly, squeezed light will be used to demonstrate a non-classical light enhanced laser power stabilization experiment surpassing the quantum limit for the first time.
光的压缩真空态已被用于各种原理验证实验中,以减少光子计数噪声(散粒噪声)。在德国汉诺威的引力波探测器GEO600上,压缩光在量子计量学中的首次长期应用已经进行了两年多。这个成功的压缩光应用已经证明了它的普遍重要性,但也表明了在一个不太复杂,因此更可靠的压缩光源设置产生更高的压缩水平的需求。本项目提出了在一个新的驻波双谐振压缩谐振腔中产生压缩真空态的光在1064 nm的波长。这种拓扑结构预计将提供前所未有的高压缩水平,范围从音频频带频率到MHz边带频率,具有显着减少的数量所需的强压缩生成的光学组件。因此,所提出的压缩光源的高可靠性似乎是现实的。此外,我们还提出了将产生的强压缩态应用于非经典激光干涉测量的两个重要方面。首先,利用强压缩态直接测量光电二极管的绝对量子效率。这种基于非经典光的测量技术的精度将超过经典(相对)测量精度,并将在许多应用中为压缩光的高检测效率提供重要的见解。第二,利用压缩光首次实现了超越量子极限的非经典光增强激光功率稳定实验。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-efficiency squeezed light generation for gravitational wave detectors
- DOI:10.1088/1361-6382/aaf448
- 发表时间:2018-12
- 期刊:
- 影响因子:3.5
- 作者:M. Mehmet;H. Vahlbruch
- 通讯作者:M. Mehmet;H. Vahlbruch
Laser Power Stabilization beyond the Shot Noise Limit Using Squeezed Light.
- DOI:10.1103/physrevlett.121.173601
- 发表时间:2018-10
- 期刊:
- 影响因子:8.6
- 作者:H. Vahlbruch;D. Wilken;M. Mehmet;B. Willke
- 通讯作者:H. Vahlbruch;D. Wilken;M. Mehmet;B. Willke
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Henning Vahlbruch其他文献
Dr. Henning Vahlbruch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
均相液相生物芯片检测系统的构建及其在癌症早期诊断上的应用
- 批准号:82372089
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
- 批准号:82372015
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
网格中以情境为中心的应用自动化研究
- 批准号:60703054
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Giant modulation of the speed of nonlinear quantum phase transitions in strongly correlated materials via chemical bonding force engineering and its application to emergent neuromorphic devices
通过化学键合力工程对强相关材料中非线性量子相变速度的巨大调制及其在新兴神经形态器件中的应用
- 批准号:
23K03919 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing first-principles method for strongly interacting phonons and its application to exotic phenomena
开发强相互作用声子的第一原理方法及其在奇异现象中的应用
- 批准号:
22KJ1028 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Construction of effective theories based on hidden symmetries and their application to strongly correlated quantum liquids
基于隐对称性的有效理论构建及其在强相关量子液体中的应用
- 批准号:
21K03384 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Resurgence theory and its application to strongly coupled physics
复兴理论及其在强耦合物理中的应用
- 批准号:
21K03558 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a numerical solver "correlation eraser" and application to strongly correlated electron systems
数值求解器“相关擦除器”的开发及其在强相关电子系统中的应用
- 批准号:
21K03440 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Markov-chain Monte Carlo without detailed balance and its application to strongly correlated many-body systems
无详细平衡的马尔可夫链蒙特卡罗及其在强相关多体系统中的应用
- 批准号:
20H01824 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of membrane-based nanocalorimeter and its application to strongly correlated materials
膜基纳量热计的研制及其在强相关材料中的应用
- 批准号:
20K21139 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Fundamental Equations of State for Strongly Associated Fluids Based on a Generalized Hydrogen-bonding Model: Application to ISO International Standard Formulations
基于广义氢键模型的强缔合流体的基本状态方程:在 ISO 国际标准公式中的应用
- 批准号:
20K04338 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generalization of open quantum theory for strongly coupled vibronic systems and application to spectroscopies
强耦合电子振动系统开放量子理论的推广及其在光谱学中的应用
- 批准号:
20K22520 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Effective hamiltonian construction through combining numerical simulation with experimental approaches and its application to strongly correlated topological materials
通过数值模拟与实验方法相结合的有效哈密顿构造及其在强相关拓扑材料中的应用
- 批准号:
20H01850 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)