NaSCA: Nano-Scale Side-Channel Analysis - Physical Security for Next-Generation CMOS ICs
NaSCA:纳米级侧通道分析 - 下一代 CMOS IC 的物理安全
基本信息
- 批准号:271752544
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Currently we are being surrounded by an ever-growing number of cyber-physical systems e.g., electronic toll collection, traffic management, electronic payments, smart homes etc. Although this offers many benefits, the embedded security-enabled devices are in control of legitimate users, who can play the role of an adversary. It enables serious risks with respect to system security, not only due to the flaws of crypto algorithms. Also, the implementation attacks, as serious threats for pervasive applications, can turn a theoretically-robust system into a completely-broken setup. As demonstrated by numerous side-channel analysis (SCA) attacks, securing ubiquitous systems is a must as well as a non-trivial task. Interestingly, the SCA community offers a large toolbox of advanced countermeasures for protecting the crypto devices against such physical attacks. The power analysis countermeasures have been designed based on the principle of dynamic power consumption. However, by fast technology shrinking static power consumption of nano-scale CMOS circuits is becoming a major concern. Hence, the known countermeasures have serious shortcomings when static power consumption is considered by an SCA adversary. In the near future the cryptographic devices, equipped with theoretically-sound countermeasures, will fail to provide the desired level of protection as their security is provable excluding the concept of static power. Indeed, the result of our preliminary study in this area, where we examined the SCA vulnerability of FPGA platforms through static power, supports this statement. Nevertheless, it would be a great benefit to develop protection solutions considering both dynamic and static power. We believe that this is possible, at least to a certain extent, by carefully re-designing, extending, and composing the known countermeasures. In this project we will investigate SCA through static power for FPGA and ASIC platforms. We will analyze the efficiency of the known countermeasures to protect crypto devices (e.g., an AES coprocessor) against static power analysis attacks. Based on this, countermeasures will be (re-)designed to match the certain requirements resulting in more robust schemes with enhanced functionality. We will develop dedicated and provably-secure countermeasures (for FPGA and ASIC platforms) based on the result of our practical analyses. The fabricated ASIC samples and the FPGA modules will be practically evaluated to ensure the robustness of our developed countermeasures. Hence, an interdisciplinary effort based on applied cryptography and cryptographic engineering is required to cope with these challenges.In contrast to our approach, previous works usually deal with solely dynamic power side channel, use heuristic physical security techniques or basic obfuscation schemes, and lack sound proof to prove the security. In fact, resistance against SCA attacks through static power has barely been considered by the SCA community.
目前,我们正被越来越多的网络物理系统所包围,例如电子收费、交通管理、电子支付、智能家居等。尽管这提供了很多好处,但嵌入式安全设备受到合法用户的控制,合法用户可以扮演对手的角色。它会给系统安全带来严重风险,这不仅仅是因为加密算法的缺陷。此外,实施攻击作为普遍应用程序的严重威胁,可以将理论上稳健的系统变成完全损坏的设置。正如众多旁道分析 (SCA) 攻击所证明的那样,保护无处不在的系统是一项必须的任务,也是一项艰巨的任务。有趣的是,SCA 社区提供了一个包含高级对策的大型工具箱,用于保护加密设备免受此类物理攻击。基于动态功耗原理设计了功耗分析对策。然而,通过快速技术缩小纳米级 CMOS 电路的静态功耗正成为一个主要问题。因此,当 SCA 对手考虑静态功耗时,已知的对策具有严重的缺点。在不久的将来,配备了理论上合理的对策的加密设备将无法提供所需的保护级别,因为它们的安全性已得到证明,不包括静态功率的概念。事实上,我们在该领域的初步研究结果(我们通过静态功耗检查了 FPGA 平台的 SCA 漏洞)支持了这一说法。尽管如此,开发同时考虑动态和静态功耗的保护解决方案将是一个巨大的好处。我们相信,通过仔细地重新设计、扩展和组合已知的对策,至少在一定程度上这是可能的。在这个项目中,我们将通过 FPGA 和 ASIC 平台的静态电源研究 SCA。我们将分析已知对策的效率,以保护加密设备(例如 AES 协处理器)免受静态功耗分析攻击。在此基础上,将(重新)设计对策以满足某些要求,从而产生具有增强功能的更稳健的方案。我们将根据实际分析的结果,开发专用且可证明安全的对策(针对 FPGA 和 ASIC 平台)。所制造的 ASIC 样品和 FPGA 模块将进行实际评估,以确保我们开发的对策的稳健性。因此,需要基于应用密码学和密码工程的跨学科努力来应对这些挑战。与我们的方法相反,以前的工作通常仅处理动态功率侧信道,使用启发式物理安全技术或基本混淆方案,并且缺乏可靠的证据来证明安全性。事实上,SCA社区几乎没有考虑过通过静态电源抵抗SCA攻击。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Risk of Outsourcing: Hidden SCA Trojans in Third-Party IP-Cores Threaten Cryptographic ICs
- DOI:10.1109/ets48528.2020.9131594
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:David Knichel;Thorben Moos;A. Moradi
- 通讯作者:David Knichel;Thorben Moos;A. Moradi
Static Power Side-Channel Analysis—An Investigation of Measurement Factors
静态功率侧信道分析——测量因素的研究
- DOI:10.1109/tvlsi.2019.2948141
- 发表时间:2020
- 期刊:
- 影响因子:2.8
- 作者:T. Moos;A. Moradi;B. Richter
- 通讯作者:B. Richter
On the Easiness of Turning Higher-Order Leakages into First-Order
- DOI:10.1007/978-3-319-64647-3_10
- 发表时间:2017-04
- 期刊:
- 影响因子:0
- 作者:Thorben Moos;A. Moradi
- 通讯作者:Thorben Moos;A. Moradi
Static Power SCA of Sub-100 nm CMOS ASICs and the Insecurity of Masking Schemes in Low-Noise Environments
低于 100 nm CMOS ASIC 的静态功耗 SCA 以及低噪声环境中掩蔽方案的不安全性
- DOI:10.13154/tches.v2019.i3.202-232
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:T. Moos
- 通讯作者:T. Moos
Static power side-channel analysis of a threshold implementation prototype chip
阈值实现原型芯片的静态功耗侧信道分析
- DOI:10.23919/date.2017.7927198
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:T. Moos;A. Moradi;B. Richter
- 通讯作者:B. Richter
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Amir Moradi其他文献
Professor Dr. Amir Moradi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Amir Moradi', 18)}}的其他基金
Aged but Fit: Long Lasting Security for Trusted Platforms
年长但健康:值得信赖的平台的持久安全
- 批准号:
418658052 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Security for Internet of Things with Low Energy and Low Power Consumption (GreenSec)
低能耗、低功耗物联网安全(GreenSec)
- 批准号:
393207943 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
SSIMA – Scalable Side-Channel Immune Micro-Architecture
SSIMA – 可扩展的侧通道免疫微架构
- 批准号:
535533866 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
phySicAlly secUre reconfiguraBlE platfoRm (SAUBER)
物理安全的可重构平台(CLEAN)
- 批准号:
435264177 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
电组装纤维素纳米晶/nano-ZnO有序结构凝胶的可控制备及其感染性创面修复的应用研究
- 批准号:JCZRYB202501279
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Nano-M(On)-SiCNWs-SiC催化材料的制备及其协同催化制氢机理研究
- 批准号:2025JJ70041
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
pH响应nano-PROTACs通过双重抑制DNA损
伤修复增敏乳腺癌免疫检查点阻断疗法
的研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
口服 GelNB/GelMA@LSP-2nano 黏附凝胶微球
预防及治疗放射性肠炎的应用及基础研究
- 批准号:Y24H030019
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
自传递nano-PROTACs通过激活级联免疫促进肿瘤化学免疫治疗的研究
- 批准号:82302355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
自传递nano-PROTACs通过诱导BRD4降解促进抗肿瘤光动力学治疗的研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
NbN截面型扫描nano-SQUID探针研发及磁场下特性研究
- 批准号:62301542
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于SiC纳米纤维纸预浸片的SiCnf/nano-SiC陶瓷基复合材料制备及增韧机理研究
- 批准号:LZ23E020003
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
纳米阿霉素(Nano-DOX)规避内生机制和环境机制介导的肿瘤耐药及联用PD-L1抑制剂抗三阴性乳腺癌研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于微量热法精准构筑Nano-M@MOFs高效电催化CO2转化的研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
A novel fluorescence anisotropy imaging for imaging nano-scale LLPS in living cells
一种用于活细胞中纳米级 LLPS 成像的新型荧光各向异性成像
- 批准号:
23K17398 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Creating nano-scale molecular polariton states on metal surfaces
在金属表面创建纳米级分子极化子态
- 批准号:
22KJ3099 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Bioinspired Nanoionic Materials for Watt-scale Nano-Hydroelectric Generator
用于瓦级纳米水力发电机的仿生纳米离子材料
- 批准号:
DP230101040 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Projects
Stable creation and effective driving of skyrmins in three-dimensional controlled space in precise nano scale
精确纳米尺度三维受控空间中斯格明的稳定生成和有效驱动
- 批准号:
23H01730 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantum-enabled Nano-scale Rheology Of The Microbial Seawater Environment
微生物海水环境的量子纳米级流变学
- 批准号:
EP/X035689/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Quantum-enabled nano-scale rheology of the microbial seawater environment
微生物海水环境的量子纳米级流变学
- 批准号:
EP/X035905/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Evaluation on behavior of dissimilar materials and health monitoring by micro/nano scale fusion joining
通过微/纳米尺度熔接评估异种材料的行为和健康监测
- 批准号:
23K04404 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nano-Earth sciences: Understanding environmental processes at the nano-scale
纳米地球科学:了解纳米尺度的环境过程
- 批准号:
RGPIN-2018-04678 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Exploring 3D nano-scale printed ice analogues in Atmospheric Science (E3DP-IANAS)
探索大气科学中的 3D 纳米级打印冰类似物 (E3DP-IANAS)
- 批准号:
NE/X012174/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Conference: Mid-scale RI-EW: Nano Systems Innovation (NanoSI)
会议:中型 RI-EW:纳米系统创新 (NanoSI)
- 批准号:
2233559 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant