Quantized Compressive Spectrum Sensing (QuaCoSS)

量化压缩频谱传感 (QuaCoSS)

基本信息

  • 批准号:
    273202924
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Priority Programmes
  • 财政年份:
    2015
  • 资助国家:
    德国
  • 起止时间:
    2014-12-31 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Spectrum sensing aims at detecting non-occupied frequency bands in the radio spectrum in order to enable unlicensed (secondary) users to opportunistically communicate over these bands. The goal is to increase communication rates for the secondary users without creating interference for licensed (primary) users. However, this demands to monitor a very large bandwidth so that sampling at the Nyquist rate may result in unacceptably large amount of samples. It is well-known that some of the test statistics used in spectrum sensing feature sparsity, i.e., the frequency spectrum has been shown to be sparsely occupied and the cyclic spectra of man-made signals are sparse. By exploiting this sparsity, one may use compressed sensing techniques instead of traditional Shannon-Nyquist sampling in order to significantly reduce the number of samples, while still ensuring reliable detection of non-occupied bands. In practice, samples have to be quantized before exchanging these.This project aims to explore the effect of quantization in compressed sensing on spectrum sensing. We will explore both the extreme case of one-bit quantization, where only the sign of a measurement is retained, as well as multi-bit quantization schemes. A particular focus is put on structured random measurements such as the random partial Fourier matrix, which are highly relevant in practical applications. While initial theoretical results on quantized compressed sensing are available for Gaussian random measurement matrices, structured random matrices remain completely unexplored in this context up to now. Moreover, we plan to investigate two open fundamental problems in the practical application of quantized compressive spectrum sensing. Firstly, given a fixed bit-budget for communication we will investigate the tradeoff concerning the quantization resolution and the number of measurements taken by secondary users in order to achieve optimal detection performance. Secondly, we will analyze the tradeoff between the occupancy decision frequency and the bit-budget available per decision in order to minimize wasted transmission opportunities.The research group of Mathar will dedicate its efforts to the development, implementation and simulation of quantized compressed sensing algorithms and their application in the spectrum sensing context. The focus of the research group of Rauhut and Dirksen will be on the theoretical analysis of quantized compressed sensing with the aim of deriving rigorous error guarantees and sharp bounds on the required number of measurements. The interaction of the two groups is expected to be crucial for achieving significant progress on the understanding and practical implementation of quantized compressive spectrum sensing.
频谱感应旨在侦测无线电频谱中未被占用的频带,使未领牌(辅助)用户可以在这些频带上进行通讯。目标是在不干扰授权(主)用户的情况下提高辅助用户的通信速率。然而,这需要监控一个非常大的带宽,以便以奈奎斯特速率采样可能导致不可接受的大量样本。众所周知,用于频谱感知的一些测试统计量具有稀疏性,即频谱被稀疏占用,人造信号的循环谱是稀疏的。通过利用这种稀疏性,人们可以使用压缩感知技术来代替传统的Shannon-Nyquist采样,以显着减少样本数量,同时仍然确保可靠地检测未占用的频带。在实践中,样品必须在交换这些之前进行量化。本项目旨在探讨压缩感知中量化对频谱感知的影响。我们将探讨一比特量化的极端情况,其中只保留测量的符号,以及多比特量化方案。一个特别的重点放在结构化随机测量,如随机部分傅立叶矩阵,这是高度相关的实际应用。虽然对高斯随机测量矩阵的量化压缩感知已经有了初步的理论结果,但到目前为止,结构化随机矩阵在这方面还没有得到充分的研究。此外,我们计划在量化压缩频谱感知的实际应用中研究两个开放的基本问题。首先,给定一个固定的通信位预算,我们将研究量化分辨率和次要用户采取的测量次数之间的权衡,以实现最佳的检测性能。其次,我们将分析占用决策频率和每个决策可用的比特预算之间的权衡,以尽量减少浪费的传输机会。Mathar的研究小组将致力于量化压缩感知算法的开发、实现和仿真及其在频谱感知环境中的应用。Rauhut和Dirksen研究小组的重点将放在量化压缩感知的理论分析上,目的是获得严格的误差保证和所需测量次数的明确界限。预计这两个小组的相互作用对于在量化压缩频谱感知的理解和实际实施方面取得重大进展至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Rudolf Mathar其他文献

Professor Dr. Rudolf Mathar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Rudolf Mathar', 18)}}的其他基金

Compressed Localization and Spectrum Sensing for Cognitive Radio and Distributed Radio Surveillance
用于认知无线电和分布式无线电监视的压缩定位和频谱感知
  • 批准号:
    335181839
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Compressive Covariance Sampling for Spectrum Sensing (CoCoSa)
用于频谱传感的压缩协方差采样 (CoCoSa)
  • 批准号:
    260738363
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Compressed Localization and Spectrum Sensing for Cognitive Radio and Distributed Radio Surveillance (CLASS)
用于认知无线电和分布式无线电监视 (CLASS) 的压缩定位和频谱感知
  • 批准号:
    248911821
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
An Information Theoretic Approach to Stimulus Processing in the Olfactory System II
嗅觉系统刺激处理的信息论方法 II
  • 批准号:
    214286491
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Compressed Sensing für Mobilfunknetze
移动网络的压缩感知
  • 批准号:
    194709232
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Information Fusion for Wireless Sensor Networks with Integrated UWB Communication and Radar Capabilities (UWB-InFuCoRa)
具有集成 UWB 通信和雷达功能的无线传感器网络信息融合 (UWB-InFuCoRa)
  • 批准号:
    177388414
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Power Adjustment and Constructive Interference Alignment for Wireless Networks
无线网络的功率调整和相长干扰对准
  • 批准号:
    140842510
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Power, Rate and Location Control for Multi-User Ultra-Wideband Communication (Multi-User UWB Communication)
多用户超宽带通信的功率、速率和位置控制(多用户UWB通信)
  • 批准号:
    23650813
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Lastadaption in Mobilfunknetzen, mathematische Planungs- und Steuerungsansätze
移动网络中的负载自适应、数学规划和控制方法
  • 批准号:
    5253560
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Analysis and optimization of future hierarchical service integrating cellular networks
未来蜂窝网络融合分层服务分析与优化
  • 批准号:
    5222084
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于Compressive sensing理论的单探测器太赫兹成像技术
  • 批准号:
    60977009
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
Compressive Sensing 理论及信号最佳稀疏分解方法研究
  • 批准号:
    60776795
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

EAGER: IMPRESS-U: Exploratory Research on Generative Compression for Compressive Lidar
EAGER:IMPRESS-U:压缩激光雷达生成压缩的探索性研究
  • 批准号:
    2404740
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
INVESTIGATING IN VIVO COMPRESSIVE FORCES: CELL DIVISION, NUCLEAR INTEGRITY, CANCER INITIATION
研究体内压力:细胞分裂、核完整性、癌症发生
  • 批准号:
    MR/W024519/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Fracture limit of steels under a compressive stress state nearby uniaxial compression
近单轴压缩压应力状态下钢材的断裂极限
  • 批准号:
    23K04435
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multidimensional and Compressive Super-Resolution: Theory, Computation, and Fundamental Limits
多维和压缩超分辨率:理论、计算和基本限制
  • 批准号:
    2309602
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Compressive Subsurface Radar Imaging: fast and smart detection of buried explosive threats
压缩式地下雷达成像:快速、智能地检测埋藏的爆炸物威胁
  • 批准号:
    EP/X022951/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Ensuring Data Privacy in Deep Learning through Compressive Learning
通过压缩学习确保深度学习中的数据隐私
  • 批准号:
    EP/X03447X/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Theoretical Framework for Design and Analysis of Snapshot Compressive Imaging Systems
职业:快照压缩成像系统设计和分析的理论框架
  • 批准号:
    2237538
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Deep compressive quantitative MRI imaging
深度压缩定量 MRI 成像
  • 批准号:
    EP/X001091/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Applications of Infinite Dimensional Compressive Sensing to Multi-Dimensional Analog Images using Machine Learning to Enhance Results
利用机器学习将无限维压缩感知应用于多维模拟图像以增强结果
  • 批准号:
    2889834
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Collaborative Research: Cross-plane Heat Conduction in 2D Materials under Large Compressive Strain
合作研究:大压缩应变下二维材料的横向热传导
  • 批准号:
    2211696
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了