Cooperative Approaches to Design of Nonlinear Filters

非线性滤波器设计的协作方法

基本信息

项目摘要

This project is devoted to the state estimation of (nonlinear) discrete-time stochastic dynamic systems based on noisy measurements. State estimation plays a key role in many applications where the knowledge of a system state is required for, e.g., (multistep) prediction, control, fault detection, or generally for a decision making. Important applications such as navigation, tracking, localization, and optimal control can be found in the areas of robotics and automation.In the past decades, the design of nonlinear filters has attracted a significant attention in literature and many (approximate) filtering approaches differing in assumptions, estimation quality, efficiency, and purpose have been proposed. The vast majority of the proposed filters are not optimal; and hence, tailored to specific settings. As a consequence, it is a challenging task to select an appropriate filter for an application. Typically, extensive simulations have to be performed in which different nonlinear filters compete against each other.The objective of this project is to shift from a competitive use of nonlinear filters to a cooperative approach. In particular, the stress is laid on the design of a general framework for a conceptually new cooperative approach to nonlinear filter design. This approach takes an advantage of a combination of, in some sense, complementary properties of various nonlinear - usually approximate - filters. The project analyzes four types of possible cooperative behavior of local filters (integration, monitoring, combination, and feedback) and develops respective algorithms. Using several cooperation types in filter design simultaneously leads to a cooperative global filter. Compared to the traditional filter design, which is rather competitive, the cooperative global filter will provide estimates with generally higher estimation quality in terms of accuracy, credibility, and integrity.
该项目致力于基于噪声测量的(非线性)离散时间随机动态系统的状态估计。状态估计在许多需要了解系统状态的应用中发挥着关键作用,例如(多步)预测、控制、故障检测或一般决策。导航、跟踪、定位和最优控制等重要应用可以在机器人和自动化领域找到。在过去的几十年中,非线性滤波器的设计在文献中引起了极大的关注,并且提出了许多在假设、估计质量、效率和目的方面不同的(近似)滤波方法。绝大多数提出的滤波器都不是最优的;因此,根据特定的设置进行定制。因此,为应用选择合适的滤波器是一项具有挑战性的任务。通常,必须进行广泛的模拟,其中不同的非线性滤波器相互竞争。该项目的目标是从非线性滤波器的竞争使用转向合作方法。特别是,重点放在非线性滤波器设计概念上新的协作方法的总体框架的设计上。在某种意义上,这种方法利用了各种非线性(通常是近似)滤波器的互补特性的组合。该项目分析了本地滤波器四种可能的协作行为(集成、监控、组合和反馈)并开发了各自的算法。在滤波器设计中同时使用多种协作类型会产生协作全局滤波器。与具有相当竞争力的传统滤波器设计相比,协作全局滤波器将提供在准确性、可信度和完整性方面普遍更高的估计质量的估计。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparative Study of Track-to-Track Fusion Methods for Cooperative Tracking with Bearings-only Measurements
仅方位测量协同跟踪的轨对轨融合方法的比较研究
Reconstruction of Cross-Correlations with Constant Number of Deterministic Samples
确定性样本数量恒定的互相关重建
Distributed Estimation with Partially Overlapping States based on Deterministic Sample-based Fusion
基于确定性样本融合的部分重叠状态的分布式估计
Fully Decentralized Estimation Using Square-Root Decompositions
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Uwe D. Hanebeck其他文献

Professor Dr.-Ing. Uwe D. Hanebeck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Uwe D. Hanebeck', 18)}}的其他基金

CoCPN-ng – Cooperative Cyber-Physical Networking: Next Generation
CoCPN-ng â 协作网络物理网络:下一代
  • 批准号:
    432191479
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Stochastic Optimal Control based on Gaussian Processes Regression
基于高斯过程回归的随机最优控制
  • 批准号:
    349395379
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Recursive Estimation of Rigid Body Motions
刚体运动的递归估计
  • 批准号:
    325035548
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
CoCPN: Cooperative Cyber Physical Networking
CoCPN:协作网络物理网络
  • 批准号:
    315021670
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Chance-Constrained Model Predictive Control based on Deterministic Density Approximation and Homotopy Continuation
基于确定性密度逼近和同伦延拓的机会约束模型预测控制
  • 批准号:
    267437392
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Consistent Fusion in Networked Estimation Systems
网络估计系统中的一致融合
  • 批准号:
    232171657
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Active Random Hypersurface Models: Simultaneous Shape and Pose Tracking of Extended Objects in Noisy Point Clouds
主动随机超曲面模型:噪声点云中扩展对象的同时形状和姿态跟踪
  • 批准号:
    234520279
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Stochastische modell-prädiktive Regelung von verteilt-parametrischen Systemen über digitale Netze unter Verwendung von virtuellen Mess- und Stellgrößen
使用虚拟测量和操纵变量通过数字网络对分布式参数系统进行随机模型预测控制
  • 批准号:
    173876058
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Hochdimensionale nichtlineare Zustandsschätzung auf Basis ungewisser Wahrscheinlichkeitsdichten
基于不确定概率密度的高维非线性状态估计
  • 批准号:
    58242181
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Integrierte nichtlineare modell-prädiktive Regelung und Schätzung unter umfassender Berücksichtigung stochastischer Unsicherheiten
综合考虑随机不确定性的集成非线性模型预测控制和估计
  • 批准号:
    75650505
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

PINK - Provision of Integrated Computational Approaches for Addressing New Markets Goals for the Introduction of Safe-and-Sustainable-by-Design Chemicals and Materials
PINK - 提供综合计算方法来解决引入安全和可持续设计化学品和材料的新市场目标
  • 批准号:
    10097944
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
SUNRISE: Safe and sUstainable by desigN: IntegRated approaches for Impact aSsessment of advanced matErials
SUNRISE:安全且可持续的设计:先进材料影响评估的综合方法
  • 批准号:
    10103630
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Model-Based and Design-Based Approaches to Longitudinal Causal Decomposition Analysis
基于模型和设计的纵向因果分解分析方法
  • 批准号:
    2243119
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Performance maximization of finite-time and repetitive movement based on data driven controller design approaches
基于数据驱动控制器设计方法的有限时间和重复运动的性能最大化
  • 批准号:
    23K03909
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cheminformatics and Machine Learning approaches for GPCR Computer Aided Drug Design
GPCR 计算机辅助药物设计的化学信息学和机器学习方法
  • 批准号:
    BB/X511778/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Training Grant
Research on Data-Driven Approaches for Spacecraft Trajectory Design Near Libration Points
航天器近振动点轨迹设计的数据驱动方法研究
  • 批准号:
    23KJ0807
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Improved experimental and computational approaches for the design of CTC-capturing medical devices
改进 CTC 捕获医疗设备设计的实验和计算方法
  • 批准号:
    2803958
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Cheminformatics and Machine Learning approaches for GPCR Computer-Aided Drug Design
GPCR 计算机辅助药物设计的化学信息学和机器学习方法
  • 批准号:
    2866047
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of a Protein-Cyclic Peptide Complex Structure Database and Advanced Molecular Design Approaches
蛋白质环肽复合结构数据库和先进分子设计方法的开发
  • 批准号:
    23H03496
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Systematization of planning and design approaches for collaborative management of community assets
社区资产协同管理规划设计方法的系统化
  • 批准号:
    23H03679
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了