Stochastic Optimal Control based on Gaussian Processes Regression
基于高斯过程回归的随机最优控制
基本信息
- 批准号:349395379
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In stochastic control, optimal decision making in continuous domains under statistically modeled uncertainty is usually addressed via Dynamic Programming (DP). The goal consists in finding policies that map the information available to the controller to a control input in such a way that a performance criterion, often defined in terms of costs, is optimized. Usually, using nonlinear filtering methods, this information is condensed into a probability distribution that represents the state estimate of the system to be controlled, and the policies map these distributions to control inputs.Unfortunately, DP is intractable except in a few very special cases. Therefore, approximate but tractable approaches are of interest. One such approach is the point-based value iteration algorithm, where each point is a probability distribution. In this approach, the controller maintains the optimal costs for a set of representative state estimates instead of trying the impossible task of maintaining the costs for all state estimates as it would be required in classical DP. Then, it uses this information in order to obtain an approximation of the optimal costs at a state estimate that is needed for decision making. As we see, point-based value iteration requires approximation methods for functions defined over general probability distributions. However, state-of-the-art approaches either restrict the class of possible state estimates or assume finite sets of control inputs and measurements. Although workarounds for continuous control inputs and measurements exist, they usually require additional approximations. For this reason, we propose a novel approach to stochastic control of nonlinear dynamical systems with continuous states, control inputs, and measurements that is based on Gaussian Process (GP) regression. Classical GP regression only allows for deterministic vector-valued inputs. For this reason, we propose a novel extension of the GP framework to inputs given in form of probability distributions. By doing so, we extend the GP framework to infinite-dimensional inputs. Our approach is based on the idea to define the covariance functions that determine the GP in terms of the distance between the probability distributions provided as inputs to the GP.In the course of the project, we plan to develop a solid framework for GPs defined over general probability distributions and to derive stochastic control algorithms that use such GPs to compute the policy. We believe that the proposed project will substantially contribute to research on stochastic control. Furthermore, the presented idea for defining GPs with inputs given in terms of probability distributions can also be used in machine learning research in order to derive other non-parametric Bayesian regression and classification methods over probability distributions.
在随机控制中,在统计建模的不确定性下,连续域上的最优决策通常是通过动态规划(DP)来解决的。目标在于找到将控制器可用的信息映射到控制输入的策略,从而优化通常以成本定义的性能标准。通常,使用非线性滤波方法,这些信息被浓缩成一个概率分布,该概率分布代表被控系统的状态估计,并且策略将这些分布映射到控制输入。因此,人们对近似但易于处理的方法很感兴趣。一种这样的方法是基于点的值迭代算法,其中每个点都是概率分布。在这种方法中,控制器维护一组代表性状态估计的最优成本,而不是像经典DP中所要求的那样,尝试维护所有状态估计的成本这一不可能的任务。然后,它使用这些信息来获得决策所需的状态估计下的最优成本的近似值。正如我们所看到的,基于点的值迭代需要定义在一般概率分布上的函数的近似方法。然而,最先进的方法要么限制可能的状态估计的类别,要么假设控制输入和测量的有限集合。尽管存在用于连续控制输入和测量的变通方法,但它们通常需要额外的近似。为此,我们提出了一种新的基于高斯过程回归的具有连续状态、控制输入和量测的非线性动力系统的随机控制方法。经典的GP回归只允许确定性的向量值输入。为此,我们提出了一种新的GP框架扩展到以概率分布形式给出的输入。通过这样做,我们将GP框架扩展到无限维输入。我们的方法是基于定义协方差函数的思想,该协方差函数根据提供给GP的概率分布之间的距离来确定GP。在项目过程中,我们计划为定义在一般概率分布上的GP开发一个可靠的框架,并推导出使用这种GP来计算策略的随机控制算法。我们相信,该项目的提出将对随机控制的研究做出重大贡献。此外,所提出的以概率分布形式给出输入来定义GP的思想也可以用于机器学习研究,以便推导出关于概率分布的其他非参数贝叶斯回归和分类方法。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stochastic Optimal Control Using Gaussian Process Regression over Probability Distributions
- DOI:10.23919/acc.2019.8814658
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Jana Mayer;Maxim Dolgov;Tobias Stickling;Selim Özgen;Florian Rosenthal;U. Hanebeck
- 通讯作者:Jana Mayer;Maxim Dolgov;Tobias Stickling;Selim Özgen;Florian Rosenthal;U. Hanebeck
Position and Speed Estimation of PMSMs Using Gaussian Processes
使用高斯过程估计 PMSM 的位置和速度
- DOI:10.1016/j.ifacol.2020.12.261
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Ajit Basarur;Mariana Petrova;Fabian Sordon;Antonio Zea;Uwe D. Hanebeck
- 通讯作者:Uwe D. Hanebeck
Position and Speed Estimation for BLDC Motors Using Fourier-Series Regression
- DOI:10.23919/fusion45008.2020.9190271
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Ajit Basarur;Jana Mayer;Antonio Zea;U. Hanebeck
- 通讯作者:Ajit Basarur;Jana Mayer;Antonio Zea;U. Hanebeck
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Uwe D. Hanebeck其他文献
Professor Dr.-Ing. Uwe D. Hanebeck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Uwe D. Hanebeck', 18)}}的其他基金
CoCPN-ng – Cooperative Cyber-Physical Networking: Next Generation
CoCPN-ng â 协作网络物理网络:下一代
- 批准号:
432191479 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Priority Programmes
Recursive Estimation of Rigid Body Motions
刚体运动的递归估计
- 批准号:
325035548 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
CoCPN: Cooperative Cyber Physical Networking
CoCPN:协作网络物理网络
- 批准号:
315021670 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Cooperative Approaches to Design of Nonlinear Filters
非线性滤波器设计的协作方法
- 批准号:
283072193 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Chance-Constrained Model Predictive Control based on Deterministic Density Approximation and Homotopy Continuation
基于确定性密度逼近和同伦延拓的机会约束模型预测控制
- 批准号:
267437392 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Consistent Fusion in Networked Estimation Systems
网络估计系统中的一致融合
- 批准号:
232171657 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Active Random Hypersurface Models: Simultaneous Shape and Pose Tracking of Extended Objects in Noisy Point Clouds
主动随机超曲面模型:噪声点云中扩展对象的同时形状和姿态跟踪
- 批准号:
234520279 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Stochastische modell-prädiktive Regelung von verteilt-parametrischen Systemen über digitale Netze unter Verwendung von virtuellen Mess- und Stellgrößen
使用虚拟测量和操纵变量通过数字网络对分布式参数系统进行随机模型预测控制
- 批准号:
173876058 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Priority Programmes
Hochdimensionale nichtlineare Zustandsschätzung auf Basis ungewisser Wahrscheinlichkeitsdichten
基于不确定概率密度的高维非线性状态估计
- 批准号:
58242181 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Integrierte nichtlineare modell-prädiktive Regelung und Schätzung unter umfassender Berücksichtigung stochastischer Unsicherheiten
综合考虑随机不确定性的集成非线性模型预测控制和估计
- 批准号:
75650505 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
- 批准号:
RGPIN-2020-04338 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Using stochastic optimal feedback control and computational motor control to design personalized and adaptive human robot interfaces
使用随机最优反馈控制和计算电机控制来设计个性化和自适应人类机器人界面
- 批准号:
RGPIN-2021-02625 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Stochastic optimal control in mathematical finance
数学金融中的随机最优控制
- 批准号:
RGPIN-2018-03978 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Using stochastic optimal feedback control and computational motor control to design personalized and adaptive human robot interfaces
使用随机最优反馈控制和计算电机控制来设计个性化和自适应人类机器人界面
- 批准号:
RGPIN-2021-02625 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Stochastic optimal control in mathematical finance
数学金融中的随机最优控制
- 批准号:
RGPIN-2018-03978 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Stochastic Optimal Control with High Dimensional Data
高维数据的随机最优控制
- 批准号:
2106462 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Stochastic Optimal Control of Unmanned Aerial Vehicles Against Cyber Attacks in the Presence of Uncertainty
存在不确定性的情况下无人机抵御网络攻击的随机最优控制
- 批准号:
21K14351 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
- 批准号:
RGPIN-2020-04338 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
A data driven approach for optimal stochastic control in finance
金融领域最优随机控制的数据驱动方法
- 批准号:
530985-2018 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Collaborative Research and Development Grants
Stochastic control and optimal stopping models for risk management
风险管理的随机控制和最优停止模型
- 批准号:
2431337 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship














{{item.name}}会员




