Recursive Estimation of Rigid Body Motions

刚体运动的递归估计

基本信息

项目摘要

In this proposal, we focus on algorithms for recursive estimation of rigid body motions. A rigid body motion consists of a translation and a rotation. The group of rigid body motions in three dimensions is called SE(3) and plays an important role in a variety of applications in robotics, aerospace, and computer vision. Consider for example the problem of accurate motion tracking of a moving object, say, a robotic arm, an airplane, or a head-mounted camera. All these problems necessitate estimation of the pose of the considered object, i.e., the rigid body motion of a reference coordinate frame to the body coordinate frame.For this purpose, we propose a new probability distribution on SE(3) that can be used to represent uncertain rigid body motions. Unlike most approaches in literature, the novel distribution is based on so-called unit dual quaternions, a generalization of unit quaternions to the case of rigid body motions. The novel distribution can be seen as a generalization of the hyperspherical Bingham distribution, which has been applied to estimation on the rotation group SO(3) based on unit quaternions. Similar to the Bingham density, the novel density is antipodally symmetric, i.e., x and -x always have the same probability density, which resolves the problem that unit dual quaternions q and -q represent the same rigid body motion.Based on this new probability density, we plan to develop recursive estimation algorithms that have several key advantages compared to state-of-the-art algorithms. First of all, we can represent all rigid body motions, whereas methods based on the corresponding Lie algebra typically cannot represent rotations by exactly 180 degrees. Second, there are no singularities and there is no need to switch between different parameterizations. Furthermore, we do not need to make any assumptions that the uncertainty is low, that rotations are small, or that the density describing the rigid body motions is approximately Gaussian. Due to these advantages, we expect that recursive estimation algorithms based on the new density will outperform state-of-the-art approaches that rely on Gaussian assumptions or locally linear approximations.
在本方案中,我们重点介绍了刚体运动递归估计的算法。刚体运动由平移和旋转组成。三维刚体运动组被称为SE(3),在机器人、航空航天和计算机视觉的各种应用中扮演着重要的角色。例如,考虑移动对象的精确运动跟踪问题,例如,机械臂、飞机或头戴式摄像头。所有这些问题都需要估计被考虑物体的姿态,即参考坐标系到物体坐标系的刚体运动,为此,我们在SE(3)上提出了一种新的概率分布,可以用来表示不确定的刚体运动。与文献中的大多数方法不同,新的分布是基于所谓的单位对偶四元数,单位四元数的推广到刚体运动的情况。这种新的分布可以看作是超球面宾汉分布的推广,该分布已被应用于基于单位四元数的旋转群SO(3)的估计。与Bingham密度相似,新的密度是对极对称的,即x和-x总是具有相同的概率密度,解决了单位对偶四元数q和-q代表同一刚体运动的问题,基于这种新的概率密度,我们计划开发具有几个关键优势的递归估计算法。首先,我们可以表示所有刚体的运动,而基于相应李代数的方法通常不能准确地表示180度旋转。其次,没有奇点,不需要在不同的参数之间切换。此外,我们不需要做任何不确定度低、旋转小或描述刚体运动的密度近似为高斯的假设。由于这些优点,我们预计基于新密度的递归估计算法的性能将优于依赖于高斯假设或局部线性近似的最新方法。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonlinear Progressive Filtering for SE(2) Estimation
Unscented Dual Quaternion Particle Filter for SE(3) Estimation
  • DOI:
    10.1109/lcsys.2020.3005066
  • 发表时间:
    2021-04-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Li, Kailai;Pfaff, Florian;Hanebeck, Uwe D.
  • 通讯作者:
    Hanebeck, Uwe D.
Simultaneous Localization and Mapping Using a Novel Dual Quaternion Particle Filter
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Uwe D. Hanebeck其他文献

Professor Dr.-Ing. Uwe D. Hanebeck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Uwe D. Hanebeck', 18)}}的其他基金

CoCPN-ng – Cooperative Cyber-Physical Networking: Next Generation
CoCPN-ng â 协作网络物理网络:下一代
  • 批准号:
    432191479
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Stochastic Optimal Control based on Gaussian Processes Regression
基于高斯过程回归的随机最优控制
  • 批准号:
    349395379
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
CoCPN: Cooperative Cyber Physical Networking
CoCPN:协作网络物理网络
  • 批准号:
    315021670
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Cooperative Approaches to Design of Nonlinear Filters
非线性滤波器设计的协作方法
  • 批准号:
    283072193
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Chance-Constrained Model Predictive Control based on Deterministic Density Approximation and Homotopy Continuation
基于确定性密度逼近和同伦延拓的机会约束模型预测控制
  • 批准号:
    267437392
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Consistent Fusion in Networked Estimation Systems
网络估计系统中的一致融合
  • 批准号:
    232171657
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Active Random Hypersurface Models: Simultaneous Shape and Pose Tracking of Extended Objects in Noisy Point Clouds
主动随机超曲面模型:噪声点云中扩展对象的同时形状和姿态跟踪
  • 批准号:
    234520279
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Stochastische modell-prädiktive Regelung von verteilt-parametrischen Systemen über digitale Netze unter Verwendung von virtuellen Mess- und Stellgrößen
使用虚拟测量和操纵变量通过数字网络对分布式参数系统进行随机模型预测控制
  • 批准号:
    173876058
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Hochdimensionale nichtlineare Zustandsschätzung auf Basis ungewisser Wahrscheinlichkeitsdichten
基于不确定概率密度的高维非线性状态估计
  • 批准号:
    58242181
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Integrierte nichtlineare modell-prädiktive Regelung und Schätzung unter umfassender Berücksichtigung stochastischer Unsicherheiten
综合考虑随机不确定性的集成非线性模型预测控制和估计
  • 批准号:
    75650505
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Wave-Cam: A novel micro-radar imaging array for non-rigid motion estimation in hybrid medical imaging
Wave-Cam:一种新型微雷达成像阵列,用于混合医学成像中的非刚性运动估计
  • 批准号:
    9895557
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Wave-Cam: A novel micro-radar imaging array for non-rigid motion estimation in hybrid medical imaging
Wave-Cam:一种新型微雷达成像阵列,用于混合医学成像中的非刚性运动估计
  • 批准号:
    10022314
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Wave-Cam: A novel micro-radar imaging array for non-rigid motion estimation in hybrid medical imaging
Wave-Cam:一种新型微雷达成像阵列,用于混合医学成像中的非刚性运动估计
  • 批准号:
    10383645
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Collaborative Research: Resilient Decentralized Estimation and Control for Cooperative Rigid Body Multivehicle Systems
协作研究:协作刚体多车辆系统的弹性分散估计和控制
  • 批准号:
    1657637
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Resilient Decentralized Estimation and Control for Cooperative Rigid Body Multivehicle Systems
协作研究:协作刚体多车辆系统的弹性分散估计和控制
  • 批准号:
    1562051
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Resilient Decentralized Estimation and Control for Cooperative Rigid Body Multivehicle Systems
协作研究:协作刚体多车辆系统的弹性分散估计和控制
  • 批准号:
    1561836
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Bayesian Estimation of Non-rigid Motion from Monocular Video
单目视频非刚性运动的贝叶斯估计
  • 批准号:
    421652-2012
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Bayesian Estimation of Non-rigid Motion from Monocular Video
单目视频非刚性运动的贝叶斯估计
  • 批准号:
    421652-2012
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Design of Microaccelerometer Strapdowns for Rigid-body Pose-and-twist Estimation
用于刚体姿态和扭转估计的微加速度捷联式设计
  • 批准号:
    443990-2013
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Bayesian Estimation of Non-rigid Motion from Monocular Video
单目视频非刚性运动的贝叶斯估计
  • 批准号:
    421652-2012
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了