Exact and approximate analytical solutions of the two- und three-dimensional radiative transfer equation

二维和三维辐射传递方程的精确和近似解析解

基本信息

项目摘要

The radiative transfer equation (RTE) is the fundamental equation for describing light propagation in scattering media in the mesoscopic and macroscopic scales such as in biological media, in plastics, in paints, in stones, in soils, in the atmosphere or in the interstellar space. Usually, the RTE is solved by numerical approaches like the Monte Carlo method. Recently, however we succeeded in deriving analytical solutions to the RTE for different geometries and to some of its extensions, e.g. for the generalized RTE. The aim of the project is to derive further important analytical solutions to the RTE for a variety of geometries in all spatial frequency domains and in all spatial domains considering also the solutions for discrete numbers of scattering interactions. Furthermore, analytical solutions will be derived for the correlation RTE and the diffusion equation, an often used approximation of the RTE. The new analytical solutions will be validated with or compared to Monte Carlo simulations. Analytical solutions of the RTE will be combined to solutions of the heat conduction equation, to which also analytical solutions will be derived for different geometries. In addition, the new analytical solutions will be efficiently implemented, first, to study important applications in different technical and medical fields and, second, to make the solutions available to the interested user.
辐射传输方程(RTE)是描述光在介观和宏观尺度的散射介质中传播的基本方程,如生物介质、塑料、涂料、石头、土壤、大气或星际空间。通常用蒙特卡罗方法等数值方法来求解RTE。然而,最近我们成功地导出了不同几何形状的RTE的解析解,以及它的一些扩展,例如广义RTE。该项目的目的是在所有空间频率域和所有空间域中进一步推导各种几何形状的RTE的重要解析解,同时考虑离散数量的散射相互作用的解。此外,还将得到相关RTE和扩散方程的解析解,这是RTE的一个常用近似。新的解析解将通过蒙特卡罗模拟进行验证或与之进行比较。RTE的解析解将被合并为热传导方程的解,对其也将推导出不同几何形状的解析解。此外,新的分析解决方案将得到有效实施,第一,研究不同技术和医疗领域的重要应用,第二,向感兴趣的用户提供解决方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Alwin Kienle其他文献

Professor Dr. Alwin Kienle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Alwin Kienle', 18)}}的其他基金

Anisotropic light propagation in biological tissue
生物组织中的各向异性光传播
  • 批准号:
    233254925
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Optische Kurzkohärenztomographie: Modellierung der Licht-Gewebe-Wechselwirkung
光学短相干断层扫描:模拟光与组织的相互作用
  • 批准号:
    182252227
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Light propagation in anisotropic biological tissue - influence of microstructure on scattering
光在各向异性生物组织中的传播——微观结构对散射的影响
  • 批准号:
    5405693
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fundamental theoretical and experimental investigations of wavefront shaping deep in biological media
生物介质深层波前整形的基础理论和实验研究
  • 批准号:
    445978371
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

NAfANE: New Approaches for Approximate Nash Equilibria
NAfANE:近似纳什均衡的新方法
  • 批准号:
    EP/X039862/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Speedy and Reliable Approximate Queries in Hybrid Transactional/Analytical Systems
职业:混合事务/分析系统中快速可靠的近似查询
  • 批准号:
    2339596
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Reliable logic design and test methods for error tolerant application
容错应用的可靠逻辑设计和测试方法
  • 批准号:
    23K11037
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: OAC: Approximate Nearest Neighbor Similarity Search for Large Polygonal and Trajectory Datasets
合作研究:OAC:大型多边形和轨迹数据集的近似最近邻相似性搜索
  • 批准号:
    2313039
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A study of SNN device using serial approximate adders
使用串行近似加法器的SNN装置的研究
  • 批准号:
    23K11034
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Approximate Truths: A New Ground for the Pillars of Scientific Realism
近似真理:科学实在论支柱的新基础
  • 批准号:
    2908312
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Efficient simulation and inference under approximate models of ancestry
祖先近似模型下的高效模拟和推理
  • 批准号:
    EP/X022595/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Compilation and Verification of Quantum Software in the Noisy and Approximate Regime
嘈杂近似体系中量子软件的编译与验证
  • 批准号:
    EP/Y004736/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-Tolerance, and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
  • 批准号:
    2231706
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Approximate Coded Computing - Fundamental Limits of Precision, Fault-tolerance and Privacy
协作研究:CIF:小型:近似编码计算 - 精度、容错性和隐私的基本限制
  • 批准号:
    2231707
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了