Effective Theories and Energy Minimizing Configurations for Heterogeneous Layers

异质层的有效理论和能量最小化配置

基本信息

  • 批准号:
    285722765
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2015
  • 资助国家:
    德国
  • 起止时间:
    2014-12-31 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Thin elastic sheets have been the subject of intense research over the last years, both from the analytical and from the experimental point of view. Seminal work of Friesecke, James and Müller showed that classical plate theories can be obtained from three-dimensional nonlinear elasticity rigorously in terms of a variational limit process. From the physical perspective, a method for a self-organized fabrication of nano-scrolls from atomistically thin heterogeneous layers with internal stress has been reported by Schmidt and Eberl. A first aim of the proposed project is to derive effective theories for heterogeneous elastic layers with internal stress mathematically rigorously. As for atomistically thin films it is unclear if a pure continuum description can describe the anticipated effects sufficiently accurately, these theories should in particular be obtained from fundamental interatomic interactions. We expect new terms that reflect the underlying discrete lattice structure of the materials involved. In a second step, these theories are to be examined for their energy minimizing configurations in order to obtain a thorough understanding for the stress induced geometry of such objects. While this question could be answered in a special case in a previous contribution of ours, for the plate theories under investigation we expect to see novel results. The results of this project cover the range from fundamental questions of justifying continuum mechanical methods through suitable passages from atomistic to continuum to obtaining a detailed understanding of a current physical technique on self-organization in nanotechnology.
在过去的几年里,从分析和实验的角度来看,薄弹性片一直是激烈研究的主题。Friesecke, James和m<e:1> ller的开创性工作表明,经典板理论可以从三维非线性弹性中严格地以变分极限过程获得。从物理角度来看,Schmidt和Eberl报道了一种由具有内应力的原子薄非均质层自组织制造纳米卷轴的方法。提出的项目的第一个目标是推导出具有内应力的非均质弹性层的有效理论。至于原子薄膜,尚不清楚纯连续体描述是否能够足够准确地描述预期的效应,这些理论尤其应该从基本的原子相互作用中获得。我们期望新的术语能够反映所涉及的材料的潜在离散晶格结构。在第二步中,这些理论将被检查其能量最小化配置,以获得对这些物体的应力诱导几何的彻底理解。虽然这个问题可以在我们之前的贡献中在一个特殊情况下得到回答,但对于正在研究的板块理论,我们希望看到新的结果。这个项目的结果涵盖了从证明连续体力学方法的基本问题,通过从原子到连续体的适当通道,获得对纳米技术中自组织的当前物理技术的详细理解。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effective two dimensional theories for multi-layered plates
多层板的有效二维理论
  • DOI:
    10.30819/4984
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miguel de Benito Delgado
  • 通讯作者:
    Miguel de Benito Delgado
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Bernd Schmidt其他文献

Professor Dr. Bernd Schmidt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Bernd Schmidt', 18)}}的其他基金

Synthese von Glycalen unter Verwendung von Olefinmetathese/Isomerisierungssequenzen und Übertragung des Konzepts auf Oligosaccharidketten im Sinne einer reiterativen Strategie
使用烯烃复分解/异构化序列合成糖醛,并以重复策略将概念转移到寡糖链
  • 批准号:
    20640491
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ein neues Synthesekonzept für Pseudomonasäuren und ihre Derivate
假单胞菌酸及其衍生物的新合成理念
  • 批准号:
    5329452
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Aufbau C-glycosidischer Verbindungen durch metallvermittelte Cyclisierungen
通过金属介导的环化构建 C-糖苷化合物
  • 批准号:
    5126566
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Atomistic and continuum fracture models for nanorods: equilibria anddynamics
纳米棒的原子和连续断裂模型:平衡和动力学
  • 批准号:
    441138507
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Testing Theories Of Dark Energy Using Atom Interferometry
使用原子干涉测量法测试暗能量理论
  • 批准号:
    ST/W00626X/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Testing Theories of Dark Energy Using Atom Interferometry
使用原子干涉测量法测试暗能量理论
  • 批准号:
    ST/W006316/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Low-energy dynamics and Duality in Three-dimensional Supersymmetric Gauge Theories
三维超对称规范理论中的低能动力学和对偶性
  • 批准号:
    20K14466
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Constraints from high energy completion on low-energy effective field theories.
高能完成对低能有效场论的约束。
  • 批准号:
    2276644
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
Research on superconformal field theories via low energy supersymmetry enhancement
低能超对称增强的超共形场论研究
  • 批准号:
    17K14296
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Effective theories linking low and high-energy data
连接低能和高能数据的有效理论
  • 批准号:
    1944980
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Studentship
Improved theories for calculating adsorption energy distributions of porous solids
计算多孔固体吸附能分布的改进理论
  • 批准号:
    343864554
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Construction of dark energy model based on vector-tensor theories
基于矢量张量理论的暗能量模型构建
  • 批准号:
    17K14297
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Observational constraints on the dark energy models base on modified gravitational theories at large/small distances
基于修正引力理论的大/小距离暗能量模型观测约束
  • 批准号:
    15H06635
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Polymer dynamic theories, Markov state models and protein folding free energy landscapes (B02)
聚合物动力学理论、马尔可夫态模型和蛋白质折叠自由能景观(B02)
  • 批准号:
    259766076
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research Centres
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了