An adaptive simulation-based optimisation approach for the scheduling and control of dynamic manufacturing systems - Phase 2

用于动态制造系统调度和控制的基于自适应仿真的优化方法 - 第 2 阶段

基本信息

项目摘要

In order to assure a high performance of dynamic manufacturing systems, the currently processed project AdaptiveSBO develops a data-driven adaptive simulation-based optimisation (SBO) method that derives optimised machine assignment and dispatching rules according to the current state of a manufacturing in real-time. The approach couples an SBO method deriving optimised rules for shop floor control with a framework for the data exchange between the SBO method and the manufacturing system. In this way, the optimisation always considers the current state of the system. Until now, the approach assumes an ensured availability of raw material and does not consider possible lacks. Moreover, the current approach only takes into account maintenance indirectly by performing reactive maintenance when a machine breakdown occurs. In order to reflect the current state of a production system in a more detailed and realistic way, these aspects will be taken into account in the proposed continuation of this project. In this way, the approach will on the one hand be able to derive well-founded solutions in the unwanted case of a lack of raw material and will, on the other hand, achieve less machine downtimes and therefore save costs. The main goal of the proposed project continuation is the development of a data-driven adaptive SBO method for integrated inventory, production and maintenance control.In order to achieve the main goal of the project, the already developed SBO method has to be extended in several ways. On the one hand, the method has to be expanded to derive priorities for maintenance jobs as well as production jobs depending on the current raw material inventory levels. On the other hand, the developed data exchange framework has to be extended to include all relevant data for the bidirectional data exchange between the new adaptive SBO method and the shop floor.While the German research group develops an SBO approach for integrated production and maintenance control, the Brazilian research group develops in parallel an SBO approach for integrated production and inventory control. Subsequently, the two approaches are merged to achieve the main goal of the project. For the examination of a realistic production scenario, the approach is applied to the job shop of a Brazilian producer of mechanical parts. Based on this scenario a test bench platform is developed, which is used for the evaluation of the developed method. The results will be published as a benchmark for future research in this field.
为了确保动态制造系统的高性能,目前正在处理的项目AdaptiveSBO开发了一种数据驱动的自适应模拟优化(SBO)方法,该方法根据制造的当前状态实时得出优化的机器分配和调度规则。该方法将导出车间控制优化规则的SBO方法与SBO方法与制造系统之间的数据交换框架相结合。通过这种方式,优化始终考虑系统的当前状态。到目前为止,该方法假设原材料的可用性得到保证,而不考虑可能的短缺。此外,目前的方法只通过在机器发生故障时执行反应性维护来间接考虑维护。为了更详细、更切合实际地反映生产系统的现状,本项目的拟议续展将考虑到这些方面。通过这种方式,这种方法一方面能够在缺乏原材料的不必要情况下获得有充分依据的解决方案,另一方面将实现更少的机器停机时间,从而节省成本。提出的项目延续的主要目标是开发一种数据驱动的自适应SBO方法,用于集成库存、生产和维护控制。为了实现项目的主要目标,必须从多个方面对已开发的SBO方法进行扩展。一方面,该方法必须扩展,以根据当前的原材料库存水平得出维护作业和生产作业的优先级。另一方面,开发的数据交换框架必须扩展到包括新的自适应SBO方法和车间之间的双向数据交换的所有相关数据。德国研究小组开发了用于集成生产和维护控制的SBO方法,而巴西研究小组并行开发了用于集成生产和库存控制的SBO方法。随后,这两种方法被融合在一起,以实现项目的主要目标。为了检验一个现实的生产场景,该方法被应用于一家巴西机械零件生产商的车间。在此基础上,开发了一个测试平台,用于对所开发的方法进行评估。这些结果将作为这一领域未来研究的基准发表。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Michael Freitag其他文献

Professor Dr.-Ing. Michael Freitag的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Michael Freitag', 18)}}的其他基金

A meta-learning approach to select appropriate prognostic methods for the predictive maintenance of digital manufacturing systems
一种元学习方法,用于选择适当的预测方法来进行数字制造系统的预测维护
  • 批准号:
    418821892
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于WRF-Mosaic近似不同下垫面类型改变对区域能量和水分循环影响的集合模拟
  • 批准号:
    41775087
  • 批准年份:
    2017
  • 资助金额:
    68.0 万元
  • 项目类别:
    面上项目
嵌段共聚物多级自组装的多尺度模拟
  • 批准号:
    20974040
  • 批准年份:
    2009
  • 资助金额:
    33.0 万元
  • 项目类别:
    面上项目
微扰量子色动力学方法及在强子对撞机的应用和暗物质的研究
  • 批准号:
    10975004
  • 批准年份:
    2009
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目
孔隙介质中化学渗流溶解面非稳定性的理论分析与数值模拟实验研究
  • 批准号:
    10872219
  • 批准年份:
    2008
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
Kinetic Monte Carlo 模拟薄膜生长机理的研究
  • 批准号:
    10574059
  • 批准年份:
    2005
  • 资助金额:
    12.0 万元
  • 项目类别:
    面上项目
变压吸附中真空脱附过程的传质传热规律研究
  • 批准号:
    20576028
  • 批准年份:
    2005
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

Early-Stage Clinical Trial of AI-Driven CBCT-Guided Adaptive Radiotherapy for Lung Cancer
AI驱动的CBCT引导的肺癌适应性放疗的早期临床试验
  • 批准号:
    10575081
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Improving Novice Driver Roadway Hazard Identification Through a Parent-Focused Intervention
通过以家长为中心的干预措施提高新手驾驶员道路危险识别能力
  • 批准号:
    10890278
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Project INSPIRE – (Interprofessional Simulation Program for Clinical Resilience and Empathy) for healthcare teams caring for birthing individuals with substance use disorder in Utah
INSPIRE 项目 –(临床复原力和同理心跨专业模拟项目)针对犹他州照顾患有物质使用障碍的新生儿的医疗团队
  • 批准号:
    10748245
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
ToxIndex-CPG: Machine learning driven platform integrating a hazard susceptibility database to quantify chemical toxicity factors, predict risk levels and classify biological responses
ToxIndex-CPG:机器学习驱动的平台,集成危害敏感性数据库,以量化化学毒性因素、预测风险水平并对生物反应进行分类
  • 批准号:
    10377742
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Pandemic preparedness in schools: A community based approach for sentinel surveillance
学校的流行病防范:基于社区的哨点监测方法
  • 批准号:
    10671570
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Pandemic preparedness in schools: A community based approach for sentinel surveillance
学校的流行病防范:基于社区的哨点监测方法
  • 批准号:
    10507578
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
“CRCNS: Computational principles of memory based decision making in Drosophila”
–CRCNS:果蝇基于记忆的决策的计算原理 –
  • 批准号:
    10456950
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Modeling the Coupled Dynamics of COVID-19 Transmission and Protective Behaviors
对 COVID-19 传播和保护行为的耦合动态进行建模
  • 批准号:
    10678677
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Improving Novice Driver Roadway Hazard Identification Through a Parent-Focused Intervention
通过以家长为中心的干预措施提高新手驾驶员道路危险识别能力
  • 批准号:
    10212715
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Project 2: Radiation-Induced Lymphopenia: Understanding, Predictive Modeling and Developing Photon and Proton-Based Mitigation Strategies.
项目 2:辐射引起的淋巴细胞减少症:理解、预测建模和开发基于光子和质子的缓解策略。
  • 批准号:
    10491853
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了