Optimization of ribozyme activity using large-scale nucleic acid sequence data analysis by machine learning.
通过机器学习利用大规模核酸序列数据分析优化核酶活性。
基本信息
- 批准号:21J10391
- 负责人:
- 金额:$ 0.96万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2021
- 资助国家:日本
- 起止时间:2021-04-28 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The results from the directed evolution of ligase ribozymes augmented by supervised deep learning model have been published in a high impact peer reviewed journal and presented on an international conference. As a follow up work, I explored the use of unsupervised models to generate novel functional self-cleaving ribozymes. I trained three generative models on sequences of Twister self-cleaving ribozyme family. These computational works were conducted during my visiting position in Harvard Medical School. Experimental evaluation of these models showed promising preliminary results. Overall these works have shown that deep learning models can be used to design functional ribozymes sequences in both supervised and unsupervised manner.
由有监督的深度学习模型增强的连接酶核酶的定向进化的结果已经发表在一本高影响力的同行评议杂志上,并在一次国际会议上发表。作为后续工作,我探索了使用非监督模型来产生新的功能性自切割核酶。我针对Twister自裂解核酶家族的序列训练了三个繁殖模型。这些计算工作是我在哈佛医学院访问期间进行的。对这些模型的实验评估显示了有希望的初步结果。总体而言,这些工作表明,深度学习模型可以用来以监督和非监督的方式设计功能核酶序列。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experimental exploration of a ribozyme neutral network using evolutionary algorithm and deep learning.
- DOI:10.1038/s41467-022-32538-z
- 发表时间:2022-08-17
- 期刊:
- 影响因子:16.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ロッラッタナダムロン ラチャパン其他文献
ロッラッタナダムロン ラチャパン的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Scientific machine learning: bridging the gap between theory and practice in deep learning for computational science and engineering applications
科学机器学习:弥合计算科学和工程应用深度学习理论与实践之间的差距
- 批准号:
RGPIN-2021-02470 - 财政年份:2022
- 资助金额:
$ 0.96万 - 项目类别:
Discovery Grants Program - Individual
Scientific machine learning: bridging the gap between theory and practice in deep learning for computational science and engineering applications
科学机器学习:弥合计算科学和工程应用深度学习理论与实践之间的差距
- 批准号:
RGPIN-2021-02470 - 财政年份:2021
- 资助金额:
$ 0.96万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning,Artificial Intelligence,Robotics,Character Animation,Deep Learning,Deep Learning,Bipedal Locomotion,Continuous Control,Dynamical Systems
机器学习、人工智能、机器人、角色动画、深度学习、深度学习、双足运动、连续控制、动态系统
- 批准号:
553412-2020 - 财政年份:2020
- 资助金额:
$ 0.96万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
CAREER: Sparse Associative Deep Learning using Neural Mimicry in Multimodal Machine Learning
职业:在多模态机器学习中使用神经拟态的稀疏关联深度学习
- 批准号:
1846023 - 财政年份:2019
- 资助金额:
$ 0.96万 - 项目类别:
Continuing Grant
CAREER: Sparse Associative Deep Learning using Neural Mimicry in Multimodal Machine Learning
职业:在多模态机器学习中使用神经拟态的稀疏关联深度学习
- 批准号:
1954364 - 财政年份:2019
- 资助金额:
$ 0.96万 - 项目类别:
Continuing Grant
Optimization methods for deep learning: training and testing in machine learning
深度学习的优化方法:机器学习中的训练和测试
- 批准号:
2282418 - 财政年份:2019
- 资助金额:
$ 0.96万 - 项目类别:
Studentship
"Utilization of Machine Learning, Deep Learning, and Radiomics for the classification of sub-cm lung nodules in early cancer diagnosis"
“利用机器学习、深度学习和放射组学对早期癌症诊断中的亚厘米肺结节进行分类”
- 批准号:
428870 - 财政年份:2019
- 资助金额:
$ 0.96万 - 项目类别:
Studentship Programs
Estimation and Visualization of Classroom and Learning Situations Based on Machine Learning to Support Deep Learning
基于机器学习的课堂和学习情境估计和可视化以支持深度学习
- 批准号:
18H01063 - 财政年份:2018
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: HDR Elements: Software for a new machine learning based parameterization of moist convection for improved climate and weather prediction using deep learning
合作研究:HDR Elements:基于新机器学习的湿对流参数化软件,利用深度学习改进气候和天气预报
- 批准号:
1835769 - 财政年份:2018
- 资助金额:
$ 0.96万 - 项目类别:
Standard Grant
Construction of a multilayered integrated epigenetics database based on machine learning and deep learning
基于机器学习和深度学习的多层综合表观遗传学数据库的构建
- 批准号:
18K11542 - 财政年份:2018
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




