Simultaneous contextual classification of multitemporal and multiscale remote sensing imagery based on existing GIS data for training
基于现有GIS数据对多时相、多尺度遥感影像进行同步上下文分类进行训练
基本信息
- 批准号:290281376
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is the goal of the proposed project to develop a novel methodology for the supervised context-based classification of multitemporal and multiscale remote sensing imagery without any manually labelled training data. The main scientific contribution is the development of new training methods that are tolerant to label noise, i.e., to a considerable amount of training samples with erroneous class labels. Using these methods it should become possible to use existing land cover (LC) data to derive class labels to be used for training for all pixels of an image to be classified. Rather than using sparse hand-labelled training data, we propose using an abundance of training data generated automatically, along with methods that can deal with the inevitable errors in these data. The mathematical framework for the proposed methodology is given by Conditional Random Fields (CRF). We will build a CRF that can classify data from multiple epochs and having different geometrical resolutions simultaneously, considering the fact that LC data at multiple resolutions will be characterised by different class structures. We rely on the existence of both, global, regional and local LC data sets to derive training data. We will develop new probabilistic approaches for considering label noise in training in order to obtain not only the parameters of the classifiers linking the unknown class labels of the CRF with the data, but also the parameters linking the images at different epochs with each other. As an important contribution we will consider the fact that errors in LC data are spatially correlated. The suggested project constitutes the first application of the principles of label-noise tolerant training procedures in the context of graph-based image classification, and one of the most general techniques for considering interactions between objects modelled at different semantic levels of detail. As a consequence, it should become possible to cut the costs for the update of global or regional and local LC data sets, e.g. by using cheap imagery of low resolution to get hints for changes in the high-resolution data. The new methodology is evaluated on real data with a reference that was generated manually. In the frame of an existing Memorandum of Understanding with the National Geomatics Center of China (NGCC) we will investigate the methodology in different test sites in Germany and China. We will use the global land cover data set GLC30 with 30 m geometrical resolution, developed by NGCC and available free of charge, as the coarse-resolution data set in our test cases. The high-resolution data sets we will use are those from the German Survey Authorities and NGCC, respectively.
拟议项目的目标是开发一种新的方法,用于在没有任何人工标记的训练数据的情况下对多时相和多尺度遥感图像进行监督的基于背景的分类。主要的科学贡献是开发了新的训练方法,这种方法可以容忍标记噪声,即对大量具有错误类别标记的训练样本具有容忍性。使用这些方法,应该可以使用现有的土地覆盖(LC)数据来导出用于对待分类图像的所有像素进行训练的类别标签。我们建议使用大量的自动生成的训练数据,而不是使用稀疏的手工标记的训练数据,以及可以处理这些数据中不可避免的错误的方法。该方法的数学框架由条件随机场(CRF)给出。考虑到不同分辨率的LC数据将由不同的类结构表征,我们将建立一个CRF,它可以同时对来自多个历元的不同几何分辨率的数据进行分类。我们依赖于全局、区域和局部LC数据集的存在来派生训练数据。我们将开发新的概率方法来在训练中考虑标签噪声,以便不仅获得将CRF的未知类别标签与数据联系起来的分类器的参数,而且还获得将不同时期的图像彼此联系起来的参数。作为一个重要贡献,我们将考虑LC数据中的误差在空间上是相关的这一事实。拟议的项目是在基于图形的图像分类中首次应用容忍标签噪声的训练程序的原则,也是考虑以不同语义细节水平建模的对象之间相互作用的最一般技术之一。因此,应该有可能削减更新全球或区域和本地LC数据集的费用,例如,通过使用低分辨率的廉价图像来获得高分辨率数据变化的线索。新的方法是在真实数据的基础上进行评估的,参考数据是手动生成的。在与中国国家地理信息中心现有谅解备忘录的框架内,我们将在德国和中国的不同试验场调查该方法。我们将使用由NGCC开发并免费提供的具有30m几何分辨率的全球土地覆盖数据集GLC30作为我们测试用例中的粗分辨率数据集。我们将使用的高分辨率数据集分别来自德国调查当局和NGCC。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Classification Under Label Noise Based on Outdated Maps
基于过时地图的标签噪声下的分类
- DOI:10.5194/isprs-annals-iv-1-w1-215-2017
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Rottensteiner;Heipke
- 通讯作者:Heipke
Multitemporal Classification Under Label Noise Based on Outdated Maps
基于过时地图的标签噪声下的多时相分类
- DOI:10.14358/pers.84.5.263
- 发表时间:2018
- 期刊:
- 影响因子:1.3
- 作者:Rottensteiner;Alobeid;Heipke
- 通讯作者:Heipke
AUTOMATIC CLASSIFICATION OF HIGH RESOLUTION SATELLITE IMAGERY – ACASE STUDY FOR URBAN AREAS IN THE KINGDOM OF SAUDI ARABIA
高分辨率卫星图像的自动分类——沙特阿拉伯王国城市地区的案例研究
- DOI:10.5194/isprs-archives-xlii-1-w1-11-2017
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Alrajhi;Alobeid;Heipke C.
- 通讯作者:Heipke C.
A label noise tolerant random forest for the classification of remote sensing data based on outdated maps for training
- DOI:10.1016/j.cviu.2019.07.002
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Alina E. Maas;F. Rottensteiner;C. Heipke
- 通讯作者:Alina E. Maas;F. Rottensteiner;C. Heipke
Label Noise Robust Classification Of Hyperspectral Data
- DOI:10.1109/whispers.2018.8747035
- 发表时间:2018-09
- 期刊:
- 影响因子:0
- 作者:Alina E. Maas;Behnood Rasti;M. Ulfarsson
- 通讯作者:Alina E. Maas;Behnood Rasti;M. Ulfarsson
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Christian Heipke其他文献
Professor Dr.-Ing. Christian Heipke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Christian Heipke', 18)}}的其他基金
High precision trajectory determination of an UAS by integrating camera and laser scanner data with generalised object models
通过将相机和激光扫描仪数据与广义物体模型相结合来确定无人机的高精度轨迹
- 批准号:
315096149 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Transfer learning for hierarchical Conditional Random Fields for the classification of urban aerial and satellite images
用于城市航空和卫星图像分类的分层条件随机场的迁移学习
- 批准号:
246463617 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
QTrajectores - Detektion und Verfolgung von Personen in komplexen Bildsequenzen
QTrajectores - 复杂图像序列中人物的检测和跟踪
- 批准号:
161842595 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Automatische 3D Rekonstruktion komplexer Straßenkreuzungen aus Luftbildsequenzen durch semantische Modellierung von statischen und bewegten Kontextobjekten
通过静态和移动上下文对象的语义建模,根据航空照片序列自动 3D 重建复杂的道路交叉口
- 批准号:
186143973 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Automatische multiskalige Interpretation multitemporaler Fernerkundungsdaten
多时相遥感数据的自动多尺度解译
- 批准号:
62481460 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Automatic quality assessment and update of road data in sub-urban areas using aerial images
使用航空图像自动评估和更新郊区道路数据
- 批准号:
62030877 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Automatische strukturelle Interpretation landwirtschaftlicher Flächen aus multitemporalen hochauflösenden Luftbildern
根据多时相高分辨率航空图像对农业区进行自动结构解释
- 批准号:
5451980 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Grants
Automatic quality assessment and update of digital road data in sub-urban areas using digital aerial images
使用数字航空图像自动评估和更新郊区数字道路数据
- 批准号:
5456485 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Grants
Automatische auflösungsabhängige Anpassung von Bildanalyse-Objektmodellen
图像分析对象模型的自动分辨率相关调整
- 批准号:
5408477 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
Integration of image matching and multi-image shape from shading for the derivation of digital terrain models
集成图像匹配和来自阴影的多图像形状以推导数字地形模型
- 批准号:
5331892 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Automating Assessment of Contextualization of Care During the Clinical Encounter
在临床遇到的情况下自动评估护理情境化
- 批准号:
10595446 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Efficiency of evidence accumulation (EEA) as a higher-order, computationally defined RDoc construct
证据积累效率 (EEA) 作为高阶、计算定义的 RDoc 构造
- 批准号:
10663601 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Examining Early Life Risk Factors and Patterns of Screening for Early-Onset Colorectal Cancer
检查早期生命危险因素和早发性结直肠癌筛查模式
- 批准号:
10680160 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Genetic Architecture of the Comorbidity of Alcohol Use Disorder and Chronic Pain
酒精使用障碍和慢性疼痛合并症的遗传结构
- 批准号:
10741891 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Harnessing big data to arrest the HIV/HCV/opioid syndemic in the rural and urban South
利用大数据遏制南方农村和城市的艾滋病毒/丙型肝炎/阿片类药物流行病
- 批准号:
10696612 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Application of a mobile health platform for assessing cognition and psychiatric symptoms in Veterans
应用移动健康平台评估退伍军人的认知和精神症状
- 批准号:
10579078 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Harnessing social determinant of health data to identify and engage high risk, socially vulnerable populations for diabetes prevention
利用健康数据的社会决定因素来识别和吸引高风险、社会弱势群体来预防糖尿病
- 批准号:
10425471 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Harnessing social determinant of health data to identify and engage high risk, socially vulnerable populations for diabetes prevention
利用健康数据的社会决定因素来识别和吸引高风险、社会弱势群体来预防糖尿病
- 批准号:
10653777 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Preventing Peanut Allergy in Young Children: Identifying Barriers to Protocol Engagement and Adherence
预防幼儿花生过敏:识别协议参与和遵守的障碍
- 批准号:
10641769 - 财政年份:2022
- 资助金额:
-- - 项目类别: