Novel models and control for networked problems: from discrete event to continuous dynamics
网络问题的新颖模型和控制:从离散事件到连续动态
基本信息
- 批准号:298682575
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposal is intended to deepening the understanding of hyperbolic systems posed on graphs by developing novel mathematical methods. The core of the modeling, analysis and control will be on the coupling of nonlinear hyperbolic equations. Progress in this field would allow not only to resolve inconsistencies in current mathematical models, but also to present a novel method to derive coupling conditions and control mechanisms for a general framework. In a long-term perspective suitable results in this direction may allow in future even to further closing the gap between the well-established theory of hyperbolic equations in one dimension and multi-dimensional equations. We are interested in problems arising in physical or technical descriptions of processes like production, traffic flow or fluid dynamics. The basic mechanism not exploited yet so far, is the present and well-understood microscopic description of such processes. Usually, the microscopic scale is considered not worth or possible simulating for realistic description due to its computational complexity. Here, we want to exploit this fine scale locally to derive novel and physically correct conditions and controls. This is contrary to a priori imposed conditions which present the current state-of-the-art. Additionally, we contribute to the rather new field of closed loop control strategies for hyperbolic systems. Here, we consider in particular stabilization questions of flow patterns through a novel combination of microscopic and macroscopic descriptions as well as through game theoretic considerations. For general one-dimensional and coupled hyperbolic problems we develop a new Lyapunov function approach to derive efficient closed loop control formulations. The problem is studied on a theoretical and a numerical level. In particular, for mathematical models in production and traffic flow there are also competing individual decisions need to be taken into account in the development of suitable control formulations. We propose an approach based on a combination of a description using hyperbolic equations and game theory. We investigate the resulting control algorithm and compare with existing approaches. Overall, significant progress should be made on mathematical modeling, analysis and numerical analysis. The main focus will be on production models presenting a novel field with both microscopic and macroscopic levels of descriptions. The developed new techniques will also be applied to models in traffic flow and energy transportation systems.
该建议旨在通过发展新的数学方法来加深对图上双曲系统的理解。非线性双曲方程组的耦合将是建模、分析和控制的核心。在这一领域的进展,不仅可以解决目前的数学模型中的不一致,但也提出了一种新的方法来获得耦合条件和控制机制的一般框架。从长远的角度来看,在这个方向上的适当的结果可能会允许在未来甚至进一步缩小差距之间的良好建立的理论的双曲方程在一维和多维方程。我们感兴趣的是在物理或技术描述过程中出现的问题,如生产,交通流量或流体动力学。迄今为止尚未开发的基本机制是对这些过程的现有和充分理解的微观描述。通常,微观尺度被认为是不值得或可能的模拟真实的描述,由于其计算的复杂性。在这里,我们想利用这种精细的尺度来获得新的和物理上正确的条件和控制。这是相反的先验强加的条件,目前的最先进的。此外,我们有助于双曲系统的闭环控制策略的新领域。在这里,我们认为,特别是稳定问题的流动模式,通过一种新的组合,微观和宏观的描述,以及通过博弈论的考虑。对于一般的一维和耦合双曲问题,我们开发了一个新的李雅普诺夫函数的方法来获得有效的闭环控制配方。这个问题的研究在理论和数值水平。特别是,对于生产和交通流的数学模型,在开发合适的控制公式时还需要考虑相互竞争的个人决策。我们提出了一种基于双曲方程和博弈论的描述相结合的方法。我们调查所得的控制算法,并与现有的方法进行比较。总体而言,应在数学建模、分析和数值分析方面取得重大进展。主要的重点将是生产模型提出了一个新的领域与微观和宏观层面的描述。开发的新技术也将应用于交通流和能源运输系统的模型。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the limits of stabilizability for networks of strings
论弦网络稳定性的极限
- DOI:10.1016/j.sysconle.2019.104494
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:M. Gugat;S. Gerster
- 通讯作者:S. Gerster
Entropies and Symmetrization of Hyperbolic Stochastic Galerkin Formulations
- DOI:10.4208/cicp.oa-2019-0047
- 发表时间:2020-06
- 期刊:
- 影响因子:3.7
- 作者:Stephan Gerster and Michael Herty
- 通讯作者:Stephan Gerster and Michael Herty
Hyperbolic stochastic Galerkin formulation for the p-system
- DOI:10.1016/j.jcp.2019.05.049
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Stephan Gerster;M. Herty;Aleksey Sikstel
- 通讯作者:Stephan Gerster;M. Herty;Aleksey Sikstel
Optimal control of electricity input given an uncertain demand
需求不确定时的电力输入优化控制
- DOI:10.1007/s00186-019-00678-6
- 发表时间:2019
- 期刊:
- 影响因子:1.2
- 作者:S. Göttlich;R. Korn;K. Lux
- 通讯作者:K. Lux
Convex Quadratic Mixed-Integer Problems with Quadratic Constraints
具有二次约束的凸二次混合整数问题
- DOI:10.1007/978-3-030-48439-2_15
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:S. Göttlich;K. Hameister;M. Herty
- 通讯作者:M. Herty
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Simone Göttlich其他文献
Professorin Dr. Simone Göttlich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Simone Göttlich', 18)}}的其他基金
Multiscale control concepts for transport-dominated problems
针对运输主导问题的多尺度控制概念
- 批准号:
423615040 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Priority Programmes
Combined Optimization and Virtual Commissioning of Production Systems with a High Volume of Material Flow using Multiscale Network Models (OptiPlant)
使用多尺度网络模型对具有大量物料流的生产系统进行组合优化和虚拟调试 (OptiPlant)
- 批准号:
327964174 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Optimal Material Flow Control of Production Lines by Multiscale Network Models
多尺度网络模型的生产线优化物料流控制
- 批准号:
251646252 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Extension of the multi-scale-network-model for the virtual commissioning of complex material flow systems
用于复杂物流系统虚拟调试的多尺度网络模型的扩展
- 批准号:
508338261 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
- 批准号:41105105
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
- 批准号:30830037
- 批准年份:2008
- 资助金额:190.0 万元
- 项目类别:重点项目
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
A novel, non-antibiotic, microbiome-directed agent to prevent post-surgical infection
一种新型、非抗生素、微生物组导向剂,用于预防术后感染
- 批准号:
10600765 - 财政年份:2023
- 资助金额:
-- - 项目类别:
"Novel Mouse Models for Quantitative Understanding of Baseline and Therapy-Driven Evolution of Prostate Cancer Metastasis"
“用于定量了解前列腺癌转移的基线和治疗驱动演变的新型小鼠模型”
- 批准号:
10660349 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Evaluating the efficacy of a novel NASH therapeutic
评估新型 NASH 疗法的疗效
- 批准号:
10698971 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Novel roles of PDK2 in heart failure: Regulation of mitochondrial nuclear crosstalk via metabolic regulation and histone acetylation
PDK2 在心力衰竭中的新作用:通过代谢调节和组蛋白乙酰化调节线粒体核串扰
- 批准号:
10635599 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Novel Dual-Stage Antimalarials: Machine learning prediction, validation and evolution
新型双阶段抗疟药:机器学习预测、验证和进化
- 批准号:
10742205 - 财政年份:2023
- 资助金额:
-- - 项目类别:
LEAPS-MPS: Development of Novel Multistage Models for Wolbachia-Based Strategies to Control Mosquito-Borne diseases
LEAPS-MPS:开发基于沃尔巴克氏体的新型多阶段模型来控制蚊媒疾病
- 批准号:
2316242 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Novel freely moving monkey framework for the study of naturalistic behaviors
用于研究自然行为的新型自由移动猴子框架
- 批准号:
10665292 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Novel Fiber Embedded Hydrogel Temporomandibular Joint Disc Replacement
新型纤维嵌入水凝胶颞下颌关节盘置换术
- 批准号:
10893071 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Investigating interference-control in ADHD using a novel forced-response method
使用新颖的强制响应方法研究 ADHD 的干扰控制
- 批准号:
10591920 - 财政年份:2023
- 资助金额:
-- - 项目类别: