A hybrid Fuzzy-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
用于异质材料中多态性、微观结构不确定性的混合模糊随机有限元方法
基本信息
- 批准号:312930871
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational homogenization requires two separate finite element models: a model at the macroscale and a model of the materials’ underlying structure at the microscale. Computational homogenization involves two main ingredients: the transfer of the macroscopic loading to the microscale and averaging the corresponding response of the microstructure to obtain the effective macroscopic properties. A challenging aspect for computational homogenization is the proper modelling of material with uncertainty in the microstructure, as considered in this project. Uncertainties in the macroscopic response of heterogeneous materials result from various sources: the natural variability in the microstructure’s geometry and its constituent’s material properties and the lack of sufficient knowledge regarding the microstructure. The first type of uncertainty is denoted as aleatoric uncertainty and may be characterized by probabilistic approaches. The second type of uncertainty is denoted as epistemic uncertainty and may be described using fuzzy arithmetic. Models considering both sources of uncertainty are denoted polymorphic, requiring some combination of stochastic and fuzzy methods.In Phase I we developed methods for the accurate and efficient propagation of polymorphic uncertainty through the material’s microstructure and applied all proposed approaches to a benchmark problem. The objectives of the Phase II are further development of modelling techniques and their application to the engineering design of structures. The outcome of Phase II will be an accomplished methodology allowing the uncertainty propagation from the lowest level of a material microstructure through the macroscopic structure simulation to the engineering design and decision making. More precisely in Phase II the following challenges are considered:- We continue the development of advanced fuzzy-stochastic benchmark RVE for the microstructure of heterogeneous materials, resulting thus in a more realistic and precise description of polymorphic uncertainty in the material’s microstructure. - Modelling techniques for spectral non-deterministic finite element analysis will be enriched to non-deterministic eXtended Isogeometric Analysis.- The computational cost of full-order large scale simulations of systems in the presence of uncertainty is unacceptably high, in particular considering many-query or real-time applications. Thus, reduced order modeling is an essential tool which allows a speed up microscale simulations. - Reduced order models and metamodels provide a necessary bridge to the final stage of the project, in which a suitable metamodel will be used on the macroscale to run large size simulations of engineering structures. - Finally, the influence of uncertainty in the macrostructure on the static and the dynamic behavior of engineering structures under random loading will be analyzed.
计算均化需要两个独立的有限元模型:一个是宏观尺度的模型,另一个是微观尺度的材料底层结构模型。计算均匀化包括两个主要部分:将宏观载荷转移到微观尺度,并平均相应的微观响应,以获得有效的宏观性质。计算均化的一个具有挑战性的方面是对微观结构中存在不确定性的材料进行适当的建模,正如本项目中所考虑的那样。非均质材料宏观响应的不确定性有多种来源:微观结构的几何形状及其组成成分的材料性质的自然变异性,以及对微观结构缺乏足够的知识。第一种不确定性被表示为任意不确定性,可以用概率方法来描述。第二种不确定性被表示为认知不确定性,可以用模糊算法来描述。考虑两个不确定性源的模型被表示为多态的,需要随机和模糊方法的某种组合。在第一阶段,我们开发了通过材料的微观结构准确而有效地传播多态不确定性的方法,并将所提出的所有方法应用于基准问题。第二阶段的目标是进一步发展建模技术及其在结构工程设计中的应用。第二阶段的成果将是一种成熟的方法,允许不确定性从材料微观结构的最低级别通过宏观结构模拟传播到工程设计和决策。更准确地说,在第二阶段考虑了以下挑战:-我们继续为非均质材料的微观结构开发先进的模糊-随机基准RVE,从而更真实和准确地描述材料微观结构中的多态不确定性。-频谱非确定性有限元分析的建模技术将丰富到非确定性扩展等距分析。-在存在不确定性的情况下对系统进行全阶大规模模拟的计算成本高得令人无法接受,特别是考虑到多查询或实时应用。因此,降阶建模是加速微尺度模拟的重要工具。-降阶模型和元模型为项目的最后阶段提供了必要的桥梁,在该阶段中,将在宏观尺度上使用合适的元模型来运行工程结构的大尺寸模拟。最后分析了宏观结构的不确定性对工程结构在随机荷载作用下的静力和动力行为的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Paul Steinmann其他文献
Professor Dr.-Ing. Paul Steinmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Paul Steinmann', 18)}}的其他基金
Multiscale Modeling and Simulation of Ferroelectric Materials
铁电材料的多尺度建模与仿真
- 批准号:
414986811 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Modeling and computation of growth in soft biological matter
软生物物质生长的建模和计算
- 批准号:
241697724 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
A numerical model of translational and rotational momentum transfer of small non-spherical rigid particles in fluid dominated two-phase flows
流体主导的两相流中小非球形刚性颗粒的平动和旋转动量传递的数值模型
- 批准号:
265898722 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
On nonlinear thermo-electro-mechanics in the context of electro-active polymers
电活性聚合物背景下的非线性热机电力学
- 批准号:
246833458 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
On the Formulation and the Micromechanical Origin of Non-Classical Models of Diffusion
关于非经典扩散模型的表述和微观力学起源
- 批准号:
214100946 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Molecular static methods for the simulation of ferroelectric materials
用于模拟铁电材料的分子静态方法
- 批准号:
201207895 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Units
Modeling and computation of solvent penetration in glassy polymers
玻璃态聚合物中溶剂渗透的建模和计算
- 批准号:
148911900 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
"Electronic electro-active polymers under electric loading: Experiment, modeling and simulation"
“电负载下的电子电活性聚合物:实验、建模和模拟”
- 批准号:
68543691 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Mechanische Integratoren für die Simulation von Kontaktvorgängen in der Dynamik elastischer Mehrkörpersysteme
用于模拟弹性多体系统动力学中的接触过程的机械积分器
- 批准号:
39318179 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
KEM: eine hybride Knoten/Element-basierte 3D Diskretisierungs-Methode
KEM:基于混合节点/元素的 3D 离散化方法
- 批准号:
36167394 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
完备格上元素的分解及其在刻画无限Fuzzy关系方程解集中的应用
- 批准号:11201325
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Fuzzy Domain 理论及其新拓扑工具研究
- 批准号:61070150
- 批准年份:2010
- 资助金额:12.0 万元
- 项目类别:面上项目
基于Fuzzy Sets的视频差错掩盖技术研究
- 批准号:60672134
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
基于量化Domain的Fuzzy拓扑及其计算解释
- 批准号:60542001
- 批准年份:2005
- 资助金额:8.0 万元
- 项目类别:专项基金项目
端到端的基于Fuzzy综合评判的异构网络两种丢包原因区分算法的研究
- 批准号:60572122
- 批准年份:2005
- 资助金额:20.0 万元
- 项目类别:面上项目
电力系统管理中的Fuzzy几何规划理论与方法
- 批准号:79670012
- 批准年份:1996
- 资助金额:6.5 万元
- 项目类别:面上项目
L-Fuzzy拓扑与L-Fuzzy拓扑线性空间
- 批准号:19371044
- 批准年份:1993
- 资助金额:2.5 万元
- 项目类别:面上项目
软代数(FUZZY格)理论在智能计算机、推理系统中的应用
- 批准号:69075015
- 批准年份:1990
- 资助金额:2.5 万元
- 项目类别:面上项目
LOCALE理论与FUZZY拓扑学
- 批准号:18971060
- 批准年份:1989
- 资助金额:1.3 万元
- 项目类别:面上项目
Fuzzy(模糊)拓朴线性空间结构及其对偶理论
- 批准号:18670534
- 批准年份:1986
- 资助金额:0.5 万元
- 项目类别:面上项目
相似海外基金
Fuzzy Stochastic Programming-Based Optimal Menu Planning in Consideration of Health Problems Risk
考虑健康问题风险的模糊随机规划最优菜单规划
- 批准号:
17K01276 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cooperative two-level nonlinear programming through particle swarm optimization and its fuzzy stochastic extensions
通过粒子群优化及其模糊随机扩展的协同两级非线性规划
- 批准号:
16K01244 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fuzzy-stochastic three-scale modeling for polymorphic uncertainty in lightweight structures
轻质结构多态不确定性的模糊随机三尺度建模
- 批准号:
311889577 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Interactive fuzzy multiobjective decision making through global particle swarm optimization under fuzzy stochastic enverionment and its applications
模糊随机环境下全局粒子群优化交互式模糊多目标决策及其应用
- 批准号:
26750115 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Multiobjective production and distribution network optimization in fuzzy stochastic environments
模糊随机环境下的多目标生产和分配网络优化
- 批准号:
24510190 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Global multiobjective nonlinear programming through particle swarm optimization and its extensions in fuzzy stochastic environment
基于粒子群优化的全局多目标非线性规划及其在模糊随机环境中的扩展
- 批准号:
24710167 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Bi-level multi-objective delivery planning problems in fuzzy stochastic environments
模糊随机环境下的双层多目标交付规划问题
- 批准号:
22710145 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Competitive facility location problemson networks under fuzzy and stochastic environments
模糊随机环境下网络竞争设施选址问题
- 批准号:
20710118 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Studies on diffusion processes and fuzzy valued stochastic analysis
扩散过程和模糊值随机分析的研究
- 批准号:
19540140 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Prediction of structural responses with the aid of fuzzy stochastic time series
借助模糊随机时间序列预测结构响应
- 批准号:
5448510 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Grants














{{item.name}}会员




