Multiscale Modeling and Simulation of Ferroelectric Materials

铁电材料的多尺度建模与仿真

基本信息

项目摘要

The state of the art in material modeling offers accurate simulation methods for specific length and time scales, spanning from electronic structure calculations and molecular mechanics at atomistic scales to continuum formulations at the macroscale. However, computational costs limit the length and time scales accessible to atomistic simulation techniques. As a noteworthy exception, the quasicontinuum (QC) method reduces computational costs without losing atomistic detail in regions where it is required. Thereby it reduces the number of degrees of freedom by introducing kinematic constraints, which interpolate lattice site positions from the positions of a reduced set of representative atoms. In addition to kinematic constraints, summation rules are introduced to efficiently reduce the number of lattice sites to be considered in the computation of energies and forces. The QC method has proven useful to study exemplary problems in multiscale material modeling such as nanoindentation, interaction of lattice defects with nanosized cracks and nanovoids, etc.However, the established QC method has two central limitations. First, it does not extend satisfactorily to multi-lattice crystals to capture non-uniform behavior within a unit cell or a molecule. Second, and more importantly, it does not extend to ionic crystals, since long-range Coulomb interactions present an additional challenge for the QC method. The QC summation rules take advantage of typical short-range interatomic potentials, which admit the local evaluation of quantities of interest. When long-range interactions gain importance, such a concept no longer applies. This restriction on the nature of atomic-level interactions for the conventional QC method excludes its application to a large class of materials; all dielectrics, polarizable solids, and ionic solids.The QC method, therefore, does not find application to study the rich dielectric behavior of typical functional materials that are central to modern technologies in energy storage, sensing/actuation, etc. Developing and extending the QC method for ionic crystals is thus a significant leap in broadening the applicability of the method. Therefore, through this project we propose a novel extended QC method that is applicable to multi-lattice crystals and ionic crystals thereby overcoming limitations of the established QC method. The preliminary work undertaken at LTM using a QC software developed and implemented in-house shows promising results and indicates that the proposed extended QC method will indeed apply effectively to ionic crystals. Thus in summary, the goals of this project are (i) extension of the QC method to multi-lattice crystalline materials, (ii) extension of the QC method to handle long-range Coulomb interactions, (iii) implementation of these extensions and providing the first open-source library for three-dimensional QC simulations, and (iv) the study of ferroelectric behavior using the extended QC method.
材料建模的最新技术为特定长度和时间尺度提供了精确的模拟方法,从原子尺度上的电子结构计算和分子力学到宏观尺度上的连续体公式。然而,计算成本限制了原子模拟技术的长度和时间尺度。作为一个值得注意的例外,准连续体(QC)方法减少了计算成本,而不会丢失所需区域的原子细节。因此,它通过引入运动学约束来减少自由度的数量,运动学约束从一组简化的代表性原子的位置插入晶格位置。除了运动学约束外,还引入了求和规则,以有效地减少在计算能量和力时需要考虑的点阵点的数量。QC方法已被证明可用于研究多尺度材料建模中的示例性问题,如纳米压痕、晶格缺陷与纳米裂纹和纳米空隙的相互作用等。然而,已建立的QC方法有两个主要局限性。首先,它不能令人满意地扩展到多晶格晶体,以捕获单位细胞或分子内的非均匀行为。其次,更重要的是,它不能扩展到离子晶体,因为远程库仑相互作用对QC方法提出了额外的挑战。QC求和规则利用了典型的短程原子间势,它允许对感兴趣的量进行局部评价。当远程交互变得重要时,这样的概念就不再适用了。传统QC方法对原子水平相互作用性质的限制使其无法应用于大类材料;所有的电介质、极化固体和离子固体。因此,QC方法不适用于研究典型功能材料的丰富介电行为,而这些功能材料是现代储能、传感/驱动等技术的核心。因此,发展和推广离子晶体质量控制方法是拓宽该方法适用性的一个重大飞跃。因此,通过本项目,我们提出了一种适用于多晶格晶体和离子晶体的新型扩展QC方法,从而克服了现有QC方法的局限性。LTM使用内部开发和实施的QC软件进行的初步工作显示出有希望的结果,并表明所提出的扩展QC方法确实可以有效地应用于离子晶体。综上所述,该项目的目标是(i)将QC方法扩展到多晶格晶体材料,(ii)将QC方法扩展到处理远程库仑相互作用,(iii)实现这些扩展并提供第一个用于三维QC模拟的开源库,以及(iv)使用扩展QC方法研究铁电行为。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Paul Steinmann其他文献

Professor Dr.-Ing. Paul Steinmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Paul Steinmann', 18)}}的其他基金

A hybrid Fuzzy-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
用于异质材料中多态性、微观结构不确定性的混合模糊随机有限元方法
  • 批准号:
    312930871
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Modeling and computation of growth in soft biological matter
软生物物质生长的建模和计算
  • 批准号:
    241697724
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
A numerical model of translational and rotational momentum transfer of small non-spherical rigid particles in fluid dominated two-phase flows
流体主导的两相流中小非球形刚性颗粒的平动和旋转动量传递的数值模型
  • 批准号:
    265898722
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
On nonlinear thermo-electro-mechanics in the context of electro-active polymers
电活性聚合物背景下的非线性热机电力学
  • 批准号:
    246833458
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
On the Formulation and the Micromechanical Origin of Non-Classical Models of Diffusion
关于非经典扩散模型的表述和微观力学起源
  • 批准号:
    214100946
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Molecular static methods for the simulation of ferroelectric materials
用于模拟铁电材料的分子静态方法
  • 批准号:
    201207895
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Units
Modeling and computation of solvent penetration in glassy polymers
玻璃态聚合物中溶剂渗透的建模和计算
  • 批准号:
    148911900
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
"Electronic electro-active polymers under electric loading: Experiment, modeling and simulation"
“电负载下的电子电活性聚合物:实验、建模和模拟”
  • 批准号:
    68543691
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Mechanische Integratoren für die Simulation von Kontaktvorgängen in der Dynamik elastischer Mehrkörpersysteme
用于模拟弹性多体系统动力学中的接触过程的机械积分器
  • 批准号:
    39318179
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
KEM: eine hybride Knoten/Element-basierte 3D Diskretisierungs-Methode
KEM:基于混合节点/元素的 3D 离散化方法
  • 批准号:
    36167394
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CDS&E: Multiscale Data Intensive Simulation and Modeling of Microemulsion Boiling: A New Paradigm for Boiling Enhancement
CDS
  • 批准号:
    2347627
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ECLIPSE: Multiscale Modeling of Crossed-Field Discharges with Speed-Limited Particle-in-Cell Simulation
ECLIPSE:使用限速粒子电池模拟进行交叉场放电的多尺度建模
  • 批准号:
    2206904
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Helmet Impact Multiscale Modeling and Simulation
头盔碰撞多尺度建模与仿真
  • 批准号:
    543727-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Engage Grants Program
CAREER: Multiscale Modeling of Peptide Self-Assembly with Experiment Directed Simulation
职业:通过实验引导模拟进行肽自组装的多尺度建模
  • 批准号:
    1751471
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Multiscale Modeling, Simulation and Optimization of Cutting Tools Regarding their Tribological Behavior (C06*)
切削刀具摩擦学行为的多尺度建模、仿真和优化 (C06*)
  • 批准号:
    408212730
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research Centres
Optical Simulation of Tooth with Multiscale Modeling
使用多尺度建模进行牙齿光学模拟
  • 批准号:
    17K11781
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multiscale modeling and damage simulation of CFRP aerospace structure including microscopic imperfection
CFRP 航空航天结构(包括微观缺陷)的多尺度建模和损伤模拟
  • 批准号:
    16K18310
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Collaborative Research: Multiscale Study of Active Cellular Matter: Simulation, Modeling, and Analysis
合作研究:活性细胞物质的多尺度研究:模拟、建模和分析
  • 批准号:
    1620331
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Study of Active Cellular Matter: Simulation, Modeling, and Analysis
合作研究:活性细胞物质的多尺度研究:模拟、建模和分析
  • 批准号:
    1619960
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Study of Active Cellular Matter: Simulation, Modeling, and Analysis
合作研究:活性细胞物质的多尺度研究:模拟、建模和分析
  • 批准号:
    1620003
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了