On the Formulation and the Micromechanical Origin of Non-Classical Models of Diffusion

关于非经典扩散模型的表述和微观力学起源

基本信息

项目摘要

Diffusion processes are of utmost importance for a variety of applications in engineering and natural sciences. Drug transport in biological tissue, charge and discharge cycles in batteries, or the formation of microscructures in alloys are just a few examples. There, however, the classical diffusion model of Fickian-type often fails in explaining the complex nature of these phenomena and thus, more sophisticated non-classical diffusion models are employed. In view of the diversity of these models, the overarching goal of the project is thereby the clarification of the micromechanical origin of non-classical diffusion models. Therefore, a generic class of first and second gradient-type rigid diffusors and micromorphic-type diffusors has been formulated and implemented in the first project phase using different computational methods, e.g. finite elements, natural elements, and isogeometric analysis. Based on that, computational homogenization is and will further be carried out to determine the unknown macroscale constitutive response from the constitutive response at the microscale. Dictated by the characteristic length of the underlying microstructure, we consider the microscale problem to be either stationary or instationary, which induces size effects to the macroscale solution. To better account for small length scales at the micro-level, we propose for the second project phase the introduction and formulation of energetic interfaces at the microscale to describe phenomena like anomalous diffusion along or across an interface or surface tension when coupled to deformation. In numerous engineering applications, diffusion accompanies deformation, for which reason their coupling is particularly important and will be intensively studied within the framework of computational homogenization. Moreover, to further elucidate the micromechanics of diffusion processes we plan to employ a discrete model and identify its impact on the macroscale solution. We believe that the outcome of the of this project is of particular importance in engineering and material sciences, e.g. for the development of new materials or joining processes.
扩散过程对于工程和自然科学中的各种应用都是极其重要的。药物在生物组织中的传输,电池的充放电循环,或合金中微结构的形成,只是其中的几个例子。然而,Fickian类型的经典扩散模型往往不能解释这些现象的复杂性质,因此,采用了更复杂的非经典扩散模型。鉴于这些模型的多样性,该项目的首要目标是澄清非经典扩散模型的微观起源。因此,在项目第一阶段,采用了不同的计算方法,如有限元、自然单元和等几何分析,建立并实施了一类通用的第一和第二梯度型刚性扩散器和微形态扩散器。在此基础上,正在并将进一步进行计算均匀化,从微观尺度的本构响应确定未知的宏观尺度本构响应。由微观结构的特征长度决定,我们认为微观尺度问题要么是静止的,要么是暂定的,这就导致了宏观尺度解的尺寸效应。为了更好地解释微观层面上的小长度尺度,我们建议在第二个项目阶段引入和制定微观尺度上的高能界面,以描述沿界面或跨界面的异常扩散或与变形耦合时的表面张力等现象。在许多工程应用中,扩散伴随着变形,因此它们的耦合尤为重要,并将在计算均匀化的框架内进行深入的研究。此外,为了进一步阐明扩散过程的微观力学,我们计划使用离散模型并确定其对宏观解的影响。我们认为,该项目的成果在工程和材料科学方面具有特别重要的意义,例如在开发新材料或加入工艺方面。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Computational Homogenization of Transient Diffusion Problems
关于瞬态扩散问题的计算均质化
  • DOI:
    10.1002/pamm.201610253
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaessmair;Steinmann
  • 通讯作者:
    Steinmann
Thermomechanics of solids with general imperfect coherent interfaces
具有一般不完美相干界面的固体的热力学
  • DOI:
    10.1007/s00419-014-0870-x
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Kaessmair;Javili;amd Steinmann
  • 通讯作者:
    amd Steinmann
Variationally consistent computational homogenization of chemomechanical problems with stabilized weakly periodic boundary conditions
具有稳定弱周期性边界条件的化学力学问题的变分一致计算均质化
Computational Mechanics of Generalized Continua
广义连续体的计算力学
A Study on Mixed Finite Element Formulations Applied to Diffusion Problems
应用于扩散问题的混合有限元公式研究
  • DOI:
    10.1002/pamm.201410230
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaessmair;Javili;amd Steinmann
  • 通讯作者:
    amd Steinmann
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Paul Steinmann其他文献

Professor Dr.-Ing. Paul Steinmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Paul Steinmann', 18)}}的其他基金

Multiscale Modeling and Simulation of Ferroelectric Materials
铁电材料的多尺度建模与仿真
  • 批准号:
    414986811
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
A hybrid Fuzzy-Stochastic-Finite-Element-Method for polymorphic, microstructural uncertainties in heterogeneous materials
用于异质材料中多态性、微观结构不确定性的混合模糊随机有限元方法
  • 批准号:
    312930871
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Modeling and computation of growth in soft biological matter
软生物物质生长的建模和计算
  • 批准号:
    241697724
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
A numerical model of translational and rotational momentum transfer of small non-spherical rigid particles in fluid dominated two-phase flows
流体主导的两相流中小非球形刚性颗粒的平动和旋转动量传递的数值模型
  • 批准号:
    265898722
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
On nonlinear thermo-electro-mechanics in the context of electro-active polymers
电活性聚合物背景下的非线性热机电力学
  • 批准号:
    246833458
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Molecular static methods for the simulation of ferroelectric materials
用于模拟铁电材料的分子静态方法
  • 批准号:
    201207895
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Units
Modeling and computation of solvent penetration in glassy polymers
玻璃态聚合物中溶剂渗透的建模和计算
  • 批准号:
    148911900
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
"Electronic electro-active polymers under electric loading: Experiment, modeling and simulation"
“电负载下的电子电活性聚合物:实验、建模和模拟”
  • 批准号:
    68543691
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Mechanische Integratoren für die Simulation von Kontaktvorgängen in der Dynamik elastischer Mehrkörpersysteme
用于模拟弹性多体系统动力学中的接触过程的机械积分器
  • 批准号:
    39318179
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
KEM: eine hybride Knoten/Element-basierte 3D Diskretisierungs-Methode
KEM:基于混合节点/元素的 3D 离散化方法
  • 批准号:
    36167394
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
  • 批准号:
    EP/X025381/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Replicating the cartilage micromechanical environment
复制软骨微机械环境
  • 批准号:
    DP240102160
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Cochlear micromechanical mechanisms underlying psychoacoustic phenomena
心理声学现象背后的耳蜗微机械机制
  • 批准号:
    10715565
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Elucidation of mechanisms underlying mechanical stimulus perception and Ca2+ propagation by micromechanical stimulation in living cells
阐明活细胞中微机械刺激机械刺激感知和 Ca2+ 传播的机制
  • 批准号:
    23K18133
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Observations and Micromechanical Modeling of the Behavior of Snow/Ice Lenses Under Load in Order to Understand Avalanche Nucleation
为了了解雪崩成核,对雪/冰透镜在负载下的行为进行观察和微机械建模
  • 批准号:
    2227842
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Reconstruction of three-dimensional organ of Corti micromechanical motion patterns via optical coherence tomography
光学相干断层扫描重建三维Corti器官微机械运动模式
  • 批准号:
    10533408
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
CAREER: Fundamentals of Modeling Deformation Twinning in Polycrystalline Materials Driven by Diffraction-Based Micromechanical Data
职业:基于衍射的微机械数据驱动的多晶材料变形孪生建模基础
  • 批准号:
    2143808
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Multimodal and Multiscale-driven Quantification of Micromechanical Metrics for Location-specific Fatigue Microcracking
特定位置疲劳微裂纹的多模态和多尺度驱动的微机械指标量化
  • 批准号:
    2152369
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Towards a Micromechanical Damage Model for Lightweight Materials in Vehicle Crash
车辆碰撞中轻质材料的微机械损伤模型
  • 批准号:
    RGPIN-2017-04716
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
PhD Studentship in Micromechanical Modelling of Energetic Crystals for Estimating the Thermomechanical Response at High Strain Rates
含能晶体微机械建模博士生,用于估计高应变率下的热机械响应
  • 批准号:
    2740323
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了