Structure-Preserving Model Reduction for Dissipative Mechanical Systems
耗散机械系统的结构保持模型简化
基本信息
- 批准号:315077451
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2016
- 资助国家:德国
- 起止时间:2015-12-31 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We consider numerical methods for model reduction (MOR) of dissipative mechanical systems. After discretizing the descriptive elasticity equations or direct modeling using the finite element method, damped mechanical systems lead to systems of 2nd order differential equations. For optimized damping properties, external dampers are attached to the mechanical structure at appropriate positions. For k dampers, the external damping matrix can be parameterized using their k viscosities and position vectors. In order to suppress vibrations, an appropriate criterion encoding the possible vibrations is minimized w.r.t. the parameters of the external damping matrix. This yields a (usually) nonconvex optimization problem that can be solved using heuristic search algorithms of global optimization. Their convergence is more often than not very slow, e.g. for the Nelder-Mead method or genetic algorithms. In each iteration of such a method, the minimization criterion is to be evaluated - a usually very expensive computation. For example, when minimizing the total energy contained in the system, this requires determining the trace of the solution of the Lyapunov equation corresponding to the system. This by itself is a formidable computation so that MOR is required for efficient computational solution of the damping optimization problem. This has been investigated in several articles by the first PI (PB), using simple approaches based on modal analysis. Nevertheless, these methods do not guarantee preservation of dissipativity in the reduced-order system. Therefore, it is necessary to construct novel structure-preserving MOR methods for dissipative mechanical systems. Alternatively, methods for dissipassivation of a given reduced-order system are required when standard MOR techniques are used. This implies the goals of this proposal: We aim at developing methods for the dissipassivation of mechanical systems based on minimal perturbations. Imposing system properties of dynamical systems using minimal perturbations has already been investigated by PB and the 3rd PI (MV) in a different context. These ideas are to be extended to 2nd order systems for the new task of dissipassivation. Moreover, new structure-preserving MOR methods for dissipative mechanical systems are to be developed. For this, we suggest 4 different approaches, based on previous work for MOR of 2nd order systems by PB and the 2nd PI (TR), and on the new calculus for dissipative descriptor systems recently developed in the Ph.D. thesis of MV: balanced truncation using the Lure equations; formulation as port-Hamiltonian system and developing new MOR methods for these; 2nd-orderization of reduced-order models obtained by applying MOR methods for 1st order systems to mechanical systems; MOR for constrained mechanical systems. All methods are to be validated, tested and compared for real-world structures.
我们考虑耗散力学系统模型降阶(莫尔)的数值方法。在离散描述性弹性方程或使用有限元方法直接建模之后,阻尼机械系统导致二阶微分方程系统。为了优化阻尼性能,外部阻尼器在适当的位置连接到机械结构。对于k个阻尼器,可以使用其k粘度和位置向量来参数化外部阻尼矩阵。为了抑制振动,对可能的振动进行编码的适当准则被最小化。外部阻尼矩阵的参数。这产生了一个(通常)非凸优化问题,可以使用全局优化的启发式搜索算法来解决。它们的收敛通常不是很慢,例如对于Nelder-Mead方法或遗传算法。在这种方法的每次迭代中,要评估最小化准则-通常是非常昂贵的计算。例如,当最小化包含在系统中的总能量时,这需要确定对应于系统的李雅普诺夫方程的解的迹。这本身就是一个艰巨的计算,因此需要莫尔来有效地计算阻尼优化问题。第一个PI(PB)在几篇文章中使用基于模态分析的简单方法对此进行了研究。然而,这些方法并不能保证在降阶系统中保持耗散性。因此,有必要为耗散力学系统构造新的保结构莫尔方法。或者,当使用标准的莫尔技术时,需要给定降阶系统的去激励方法。这意味着这个建议的目标:我们的目标是开发基于最小扰动的机械系统的非被动方法。PB和第三PI(MV)已经在不同的上下文中研究了使用最小扰动来强加动力系统的系统性质。这些想法将被扩展到二阶系统的新任务的钝化。此外,新的结构保持莫尔方法耗散力学系统的发展。基于PB和第二PI(TR)对二阶系统的莫尔比(MOR)的工作,以及最近在Ph.D. MV主题:平衡截断Lure方程;制定港口汉密尔顿系统和发展新的莫尔方法;降阶模型的二阶化,通过应用莫尔方法获得一阶系统的机械系统;莫尔约束机械系统。所有方法都要经过验证、测试和比较,以用于实际结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Peter Benner其他文献
Professor Dr. Peter Benner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Peter Benner', 18)}}的其他基金
Optimal control-based feedback stabilization in multi-field flow problems
多场流问题中基于最优控制的反馈稳定
- 批准号:
25165857 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Priority Programmes
Numerische Algorithmen für verallgemeinerte Eigenwertprobleme gerader Strukturen mit Anwendungen bei der robusten Regelung von Deskriptorsystemen
偶结构广义特征值问题的数值算法及其在描述符系统鲁棒控制中的应用
- 批准号:
21520839 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Integrierte Simulation des Systems "Werkzeugmaschine - Antrieb - Zerspanprozess" auf der Grundlage ordnungsreduzierter FEM-Strukturmodelle
基于降阶有限元结构模型的“机床-驱动-切削过程”系统集成仿真
- 批准号:
29118881 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Automatische, Parameter-erhaltende Modellreduktion für mikrosystemtechnische Anwendungen
微系统应用的自动、参数保留模型简化
- 批准号:
22524003 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Numerische Lösung von Optimalsteuerungsproblemen für instationäre Diffusions-Konvektions- und Diffusions-Reaktionsgleichungen
瞬态扩散对流和扩散反应方程最优控制问题的数值求解
- 批准号:
19759922 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Design and analysis of a structure-preserving scheme for the Liu-Wu model with conservation laws both in bulk and on the boundary
具有整体和边界守恒定律的六吴模型结构保持方案的设计与分析
- 批准号:
21K20314 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Development of transplanted lung function-preserving method using a mouse model focusing on the anti-inflammatory related molecule Spred2
以抗炎相关分子Spred2为重点,开发小鼠模型的移植肺功能保留方法
- 批准号:
19K09306 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CRII: SaTC: PrivateNet - Preserving Differential Privacy in Deep Learning under Model Attacks
CRII:SaTC:PrivateNet - 在模型攻击下保护深度学习中的差异隐私
- 批准号:
1850094 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
New degrees of freedom and rigorous error bounds for the structure-preserving model order reduction of port-Hamiltonian systems
端口哈密尔顿系统的结构保持模型降阶的新自由度和严格误差界限
- 批准号:
418612884 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Development of new efficient structure-preserving numerical methods based on model reductions
基于模型简化的新型高效结构保持数值方法的开发
- 批准号:
17H02826 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Structure-Preserving Model Reduction of Automotive Systems
汽车系统的结构保持模型简化
- 批准号:
474816-2015 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Structure-Preserving Model Reduction of Automotive Systems
汽车系统的结构保持模型简化
- 批准号:
474816-2015 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Structure-Preserving Model Reduction of Automotive Systems
汽车系统的结构保持模型简化
- 批准号:
474816-2015 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Adaptive Hierarchical Network Model Reduction of Large-Scale Systems Strictly Preserving Finite Frequency Properties
严格保留有限频率特性的大规模系统的自适应分层网络模型简化
- 批准号:
25820177 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Analysis and design methods of nonlinear control systems based on the model representation preserving nonlinearities
基于保留非线性模型表示的非线性控制系统分析与设计方法
- 批准号:
17560393 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




