Dynamic tracking of structures in multiphase flows by ultrafast X-ray tomography and image based scanning steering

通过超快 X 射线断层扫描和基于图像的扫描转向对多相流中的结构进行动态跟踪

基本信息

  • 批准号:
    316064903
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2016
  • 资助国家:
    德国
  • 起止时间:
    2015-12-31 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Ultrafast imaging techniques are indispensable tools for the analysis of highly dynamic processes such as multiphase flows. The latter occur in many technical processes, e.g. in chemical multiphase reactors, in manifold ways. Modelling of multiphase flows using numerical calculation schemes (CFD) is especially demanding because of the multitude of physical effects to be considered for impulse, heat and mass transfer along with the multiple scales of the problem. For the development and validation of models for the numerical calculation of multiphase flows temporal and spatial highresolution measurement techniques, such as the ultrafast X-ray tomography system (ROFEX), which was co-developed by the applicant, are essential. The dimensioning of bubble columns, for example, relies significantly on the knowledge about the residence time behavior of the liquid as well as the gaseous phase. However, there are only few studies on the tracking of single bubbles in bubble columns, which are furthermore mainly limited to bubble columns with low gas fractions, where the single bubbles are not affected by swarm effects. Fluid mechanic investigations for determining the above mentioned parameters within a bubble swarm would strongly benefit from an online measurement technique for simultaneous measurement of bubble structure, bubble movement and surrounding phase distribution within realistic bubble columns.Therefore, the aim of the project is the advancement of the ultrafast X-ray tomography for tracking bubbles in a two-phase flow. The principle is based on a fast image steered positioning of the to-mography plane. Thus, gas bubbles can be tracked throughout their way through the flow region. During their passage, structural changes as well as interactions with other gas bubbles (coales-cence, fragmentation, and collision) can be observed. Furthermore, the complete flow structure within the imaging plane can be recorded. For the realization of dynamic experiments, efficient measurement, analysis and controlling techniques are essential. They are supposed to be obtained by interdisciplinary cooperation with the group of A. Kopmann (KIT), which possesses proved expertise in online data acquisition of large data amounts, 3D image reconstruction and image based controlling. Based on this knowledge, GPU based image reconstruction and image analysis algorithms in combination with a fast data transfer solution should be designed, developed and implemented at the ROFEX system. Concrete aim is the demonstration of the feasibility of tracking a single bubble of a bubble swarm within a bubble column. The main challenge lies in the verification of the realtime capability of data transfer and the whole data analysis chain.
超快成像技术是分析多相流等高度动态过程不可或缺的工具。后者以多种方式发生在许多技术过程中,例如在化学多相反应器中。使用数值计算方案(CFD)对多相流进行建模是特别苛刻的,这是因为要考虑脉冲、热和质量传递沿着问题的多尺度的大量物理效应。为了开发和验证多相流数值计算模型,时间和空间高分辨率测量技术,如申请人共同开发的超快X射线层析成像系统(ROFEX)是必不可少的。例如,鼓泡塔的尺寸设计主要依赖于关于液相和气相的停留时间行为的知识。然而,只有很少的研究,在鼓泡塔中的单个气泡的跟踪,而且主要限于鼓泡塔与低气体分数,其中的单个气泡不受群体效应。同时在线测量气泡结构、气泡运动和周围相分布的技术将极大地有助于确定气泡群中上述参数的流体力学研究,因此,本项目的目的是发展用于跟踪两相流中气泡的超快X射线层析成像技术。该原理基于断层摄影平面的快速图像导向定位。因此,气泡可以在其通过流动区域的整个路径上被跟踪。在它们通过的过程中,可以观察到结构变化以及与其他气泡的相互作用(聚结,破碎和碰撞)。此外,可以记录成像平面内的完整流动结构。为了实现动态实验,有效的测量、分析和控制技术是必不可少的。它们应该通过与A组的跨学科合作来获得。Kopmann(KIT)在大数据量的在线数据采集、3D图像重建和基于图像的控制方面拥有公认的专业知识。基于这些知识,基于GPU的图像重建和图像分析算法结合快速数据传输解决方案应该在ROFEX系统中设计、开发和实施。具体的目的是证明在鼓泡塔内跟踪气泡群中单个气泡的可行性。主要挑战在于验证数据传输的实时能力和整个数据分析链。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data processing performance analysis for ultrafast electron beam X-ray CT using parallel processing hardware architectures
使用并行处理硬件架构的超快电子束 X 射线 CT 数据处理性能分析
  • DOI:
    10.1016/j.flowmeasinst.2016.04.004
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Bieberle;Wagner;Bieberle;Hampel
  • 通讯作者:
    Hampel
Balancing Load of GPU Subsystems to Accelerate Image Reconstruction in Parallel Beam Tomography
平衡 GPU 子系统的负载以加速平行束层析成像中的图像重建
Control concepts for image-based structure tracking with ultrafast electron beam X-ray tomography
使用超快电子束 X 射线断层扫描进行基于图像的结构跟踪的控制概念
FPGA-Based Real-Time Data Acquisition for Ultrafast X-Ray Computed Tomography
基于 FPGA 的超快 X 射线计算机断层扫描实时数据采集
  • DOI:
    10.1109/tns.2021.3123837
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Windisch;Knodel;Juckeland;Hampel;Bieberle
  • 通讯作者:
    Bieberle
Reviewing GPU architectures to build efficient back projection for parallel geometries
  • DOI:
    10.1007/s11554-019-00883-w
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    3
  • 作者:
    S. Chilingaryan;E. Ametova;A. Kopmann;A. Mirone
  • 通讯作者:
    S. Chilingaryan;E. Ametova;A. Kopmann;A. Mirone
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Martina Bieberle其他文献

Dr.-Ing. Martina Bieberle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于非结构化网格Front Tracking方法的复杂流动区域弹性界面液滴动力学研究
  • 批准号:
    52006188
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
面向矿区地表大形变的PSI/DInSAR与Offset-tracking深度融合方法研究
  • 批准号:
    51804297
  • 批准年份:
    2018
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
非规则网格的front tracking 方法研究与程序实现
  • 批准号:
    11176015
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    联合基金项目
补偿性还是非补偿性规则:探析风险决策的行为与神经机制
  • 批准号:
    31170976
  • 批准年份:
    2011
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
多流体ALE模式下Front tracking 界面追踪法研究
  • 批准号:
    10901022
  • 批准年份:
    2009
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
  • 批准号:
    10839518
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
  • 批准号:
    10367144
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
  • 批准号:
    10610317
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Photoactivatable Fluorophores for High-Throughput Multiplexed Tracking of Single-Molecules in Live Cells
用于活细胞中单分子高通量多重追踪的光活化荧光团
  • 批准号:
    10446309
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Photoactivatable Fluorophores for High-Throughput Multiplexed Tracking of Single-Molecules in Live Cells
用于活细胞中单分子高通量多重追踪的光活化荧光团
  • 批准号:
    10612940
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Tracking and tracing complex DNA structures critical to human health
追踪和追溯对人类健康至关重要的复杂 DNA 结构
  • 批准号:
    2598059
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Optoretinography: All-optical measures of functional activity in the human retina
视网膜检光术:人类视网膜功能活动的全光学测量
  • 批准号:
    10295296
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
A Bayesian nonparametric approach to superresolved tracking of multiple molecules inside living cells
贝叶斯非参数方法对活细胞内多个分子进行超分辨跟踪
  • 批准号:
    10294246
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
A Bayesian nonparametric approach to superresolved tracking of multiple molecules inside living cells
贝叶斯非参数方法对活细胞内多个分子进行超分辨跟踪
  • 批准号:
    10524774
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
A Bayesian nonparametric approach to superresolved tracking of multiple molecules inside living cells
贝叶斯非参数方法对活细胞内多个分子进行超分辨跟踪
  • 批准号:
    10059253
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了