Model Predictive Direct Torque Control of Permanent Magnet Synchronous Motors

永磁同步电机模型预测直接转矩控制

基本信息

项目摘要

Currently, permanent magnet synchronous motors with embedded magnets (IPMSM) are mainly used for electric and hybrid vehicles due to their high power and torque densities as well as their high efficiency. In order to utilize the full performance potential of an electric drive, an adequate drive control is essential. Conventional drive controls for IPMSM are currently based on PI controllers. In comparison, Model Predictive Controllers (MPC) have the potential of a significantly better performance: A MPC exploits a process model of the system to be controlled. Based on this model optimal future control variables are determined in every sampling step. However, this online optimization sets high demands on the computation hardware. Due to innovative approaches and nowadays available more powerful computing hardware, MPC can already be used for IPMSM, but these approaches lead to other problems like high current and torque ripples.The aim of this project is to develop an MPC approach which is specifically designed for the control of IPMSM in the drivetrain of automobiles. Therefore the MPC approach to be developed is based on Direct MPC. In contrast to classical MPC, only the feasible voltage vectors of the inverter (according to possible switching states) are taken into account during the online optimization. Thus, the optimization is performed very resource-efficient, so real-time MPC can be implemented on inexpensive computation hardware. Since the calculations can be easily parallelized, FPGAs or a multi-core architecture are qualified for the implementation. The MPC will be implemented as a Direct Torque Model Predictive Control whereby the operating point selection is directly included in the inherent optimization algorithm of the MPC. This operating point optimization contributes inter alia to minimize losses. To reduce the ripples of the current and torque, respectively, the pulse pattern generation is redesigned: It can be optimized similarly to vector modulation, depending on the objective function values. This leads to a reduction of the current ripple in spite of a relatively large controller cycle time so that the computing effort can be significantly reduced thereby. By using a self-optimization for weighting the objective function, the torque dynamics for each operating point is optimized during runtime.
目前,具有嵌入磁体的永磁同步电机(IPMSM)由于其高功率和转矩密度以及其高效率而主要用于电动和混合动力车辆。为了充分发挥电驱动的性能潜力,适当的驱动控制至关重要。传统的IPMSM驱动控制目前基于PI控制器。相比之下,模型预测控制器(MPC)具有明显更好的性能的潜力:MPC利用待控制系统的过程模型。基于该模型,在每一个采样步骤中确定最优的未来控制变量。然而,这种在线优化对计算硬件提出了很高的要求。由于创新的方法和现在可用的更强大的计算硬件,MPC已经可以用于IPMSM,但这些方法导致其他问题,如高电流和转矩riple.The本项目的目的是开发一个MPC方法,这是专门设计用于汽车传动系统中的IPMSM的控制。因此,要开发的MPC方法基于直接MPC。与经典的MPC相比,在线优化过程中只考虑逆变器的可行电压矢量(根据可能的开关状态)。因此,优化是非常资源有效地执行的,因此实时MPC可以在廉价的计算硬件上实现。由于计算可以很容易地并行化,FPGA或多核架构适合实现。MPC将被实施为直接转矩模型预测控制,由此操作点选择被直接包括在MPC的固有优化算法中。该操作点优化阿利亚有助于最小化损耗。为了分别减少电流和转矩的纹波,重新设计了脉冲模式生成:它可以根据目标函数值进行类似于矢量调制的优化。这导致电流涟漪的减小,尽管控制器周期时间相对较大,使得计算工作量可以由此显著减小。通过使用用于加权目标函数的自优化,在运行时间期间优化每个操作点的转矩动态。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Continuous-Control-Set Model Predictive Control with Integrated Modulator in Permanent Magnet Synchronous Motor Applications
A direct model predictive torque control approach to meet torque and loss objectives simultaneously in permanent magnet synchronous motor applications
一种直接模型预测扭矩控制方法,可在永磁同步电机应用中同时满足扭矩和损耗目标
Finite-Control-Set Model Predictive Control for a Permanent Magnet Synchronous Motor Application with Online Least Squares System Identification
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Joachim Böcker其他文献

Professor Dr.-Ing. Joachim Böcker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Joachim Böcker', 18)}}的其他基金

Single-stage charging rectifier based on a LLC resonant converter
基于 LLC 谐振转换器的单级充电整流器
  • 批准号:
    394222435
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Self-optimizing and model-adaptive control of electrical drive systems with predictive planning of pulse patterns
通过脉冲模式的预测规划对电力驱动系统进行自优化和模型自适应控制
  • 批准号:
    405351394
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Investigation of artificial neural networks for estimating important component temperatures in electric motors
研究用于估计电动机重要部件温度的人工神经网络
  • 批准号:
    388765580
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Modular High-Current Variable-Voltage Rectifiers
模块化大电流变压整流器
  • 批准号:
    314461654
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Control method for multi-phase cyclo converters
多相环路变换器的控制方法
  • 批准号:
    245152336
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Rekonfigurierbare Systeme zur Steigerung der Regelungsperformanz und Fehlertoleranz von frequenzvariablen Antrieben
可重新配置的系统可提高变频驱动器的控制性能和容错能力
  • 批准号:
    173079485
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Holistic modelling, control configuration, and design systematics for locally concentrated Multi-Motor Drive Systems - Follow-up application
局部集中多电机驱动系统的整体建模、控制配置和设计系统 - 后续应用
  • 批准号:
    389029890
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Magnetic components for Power Electronics Operated in the Megahertz Range Using the Example of an LLC Converter
以 LLC 转换器为例,用于兆赫范围内运行的电力电子器件的磁性元件
  • 批准号:
    467840481
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Unlocking the sensory secrets of predatory wasps: towards predictive tools for managing wasps' ecosystem services in the Anthropocene
解开掠食性黄蜂的感官秘密:开发用于管理人类世黄蜂生态系统服务的预测工具
  • 批准号:
    NE/Y001397/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Anti-infective therapeutics and predictive modelling to tackle Staphylococcus aureus disease
应对金黄色葡萄球菌疾病的抗感染疗法和预测模型
  • 批准号:
    EP/X022935/2
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
  • 批准号:
    2415119
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design
职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模
  • 批准号:
    2339999
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development of a predictive biomarker for Parkinson's disease
帕金森病预测生物标志物的开发
  • 批准号:
    MR/Y019415/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Creating healthier homes for children with asthma:Developing a predictive model for environmental
为哮喘儿童创建更健康的家庭:开发环境预测模型
  • 批准号:
    2908612
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
Predictive Assessment of Material Failure
材料失效的预测评估
  • 批准号:
    2904642
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
CAREER: Predictive Multiscale Modeling of Cell Migration through Pores between Endothelial Cells
职业:通过内皮细胞之间的孔进行细胞迁移的预测多尺度建模
  • 批准号:
    2339054
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mechanistic niche predictive modelling of plant invasion at the range front
山脉前沿植物入侵的机械生态位预测模型
  • 批准号:
    EP/Y028473/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了