Development of a multi-scale model for the adsorption of molecular target substances to magnetic carrier particles using the Lattice-Boltzmann methods

使用格子-玻尔兹曼方法开发分子目标物质吸附到磁性载体颗粒的多尺度模型

基本信息

项目摘要

Biotechnology is considered a key technology for the production of pharmaceuticals, specialty chemicals and food. Many pharmaceutical products are produced by expression in genetically modified bacteria or cells. Thereby, the separation of the desired products from fermentation broth plays an important role. The separation process is difficult. Besides the target protein, there are different contaminating proteins which behave similarly and which are separated only by means of highly selective methods taking advantage of differences in isoelectric point or specific binding sites. Magnetic particles with functionalized surface are an efficient option for the separation. Currently there are no detailed investigations of the adsorption process and its influence on the whole separation process, specifically on the maximum volume flow. However, they are necessary to develop efficient procedures for industrial use.The aim of the project is to investigate the process of adsorption and separation of molecular target substances on magnetic functionalized particles. The different physical phenomena in different orders of magnitude (adsorption, inter-particular effects and separation from fluid) are challenging concerning modeling as well as simulation. The process is usually described separately by micro- and macroscopic models and coupled via boundary conditions. The relationships are complex and have not been described in a single approach. Due to high computational costs simulations were limited both locally to small areas and partially to sub-processes. In the proposed project, the physical phenomena are linked by mesoscopic modeling using Lattice Boltzmann methods (LBM) for simulation. Thus, the model to be developed links molecular phenomenon in Ångström scale with macroscopic fluid effects as well as their influence on the particle motion in the mm scale. A common approach is the microscopic description of particle dynamics, discretized by a Discrete Element Method, and a macroscopic model, discretized by a Finite Volume Method. The new approach allows a more efficient simulation and thus the simulation of a larger geometric scale, including the entire separation apparatus. The modeling approach of the calibration and validation takes place by simulation of adsorption processes in a static mixer. Then the model is reduced with sensitivity-based approaches, the process is simulated on a modern magnetic separator and experimentally validated. To final Euler-Euler-Euler model is transferable and may be used for other multi-scale issues like e.g. the simulation of photo- bioreactors in the future.
生物技术被认为是生产药品、特种化学品和食品的关键技术。许多药品都是通过转基因细菌或细胞的表达而生产的。因此,从发酵液中分离所需产物起着重要的作用。分离的过程是困难的。除了靶蛋白外,还有不同的污染蛋白,它们的行为相似,只能通过利用等电点或特定结合位点的差异的高选择性方法来分离。具有功能化表面的磁性颗粒是一种有效的分离方法。目前还没有详细的研究吸附过程及其对整个分离过程的影响,特别是对最大体积流量的影响。然而,它们对于开发工业使用的有效程序是必要的。本项目旨在研究磁性功能化颗粒对分子靶物质的吸附和分离过程。不同数量级的不同物理现象(吸附、特殊间效应和从流体中分离)在建模和模拟方面具有挑战性。该过程通常由微观和宏观模型分别描述,并通过边界条件耦合。它们之间的关系是复杂的,并没有用单一的方法来描述。由于计算成本高,模拟既局限于局部小区域,又部分局限于子过程。在提出的项目中,物理现象通过使用晶格玻尔兹曼方法(LBM)进行模拟的介观建模联系起来。因此,待建立的模型将Ångström尺度下的分子现象与宏观流体效应及其对mm尺度下粒子运动的影响联系起来。常用的方法是用离散元法离散粒子动力学的微观描述和用有限体积法离散宏观模型。新的方法允许更有效的模拟,从而模拟更大的几何尺度,包括整个分离装置。标定和验证的建模方法是通过模拟静态混合器中的吸附过程来实现的。然后采用基于灵敏度的方法对模型进行化简,在现代磁选机上进行了仿真,并进行了实验验证。最终,欧拉-欧拉-欧拉模型是可转移的,并可用于其他多尺度问题,如未来光生物反应器的模拟。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Three-dimensional protein structure prediction based on memetic algorithms
  • DOI:
    10.1016/j.cor.2017.11.015
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Corrêa;Bruno Borguesan;M. Krause;M. Dorn
  • 通讯作者:
    L. Corrêa;Bruno Borguesan;M. Krause;M. Dorn
Fluid flow simulations verified by measurements to investigate adsorption processes in a static mixer
通过测量验证流体流动模拟,以研究静态混合器中的吸附过程
  • DOI:
    10.1016/j.camwa.2018.08.066
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.-L. Maier;S. Milles;S. Schuhmann;G. Guthausen;H. Nirschl;M. J. Krause
  • 通讯作者:
    M. J. Krause
Multiscale Simulation with a Two‐Way Coupled Lattice Boltzmann Method and Discrete Element Method
  • DOI:
    10.1002/ceat.201600547
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Marie-Luise Maier;T. Henn;Gudrun Thaeter;H. Nirschl;M. Krause
  • 通讯作者:
    Marie-Luise Maier;T. Henn;Gudrun Thaeter;H. Nirschl;M. Krause
Everyone Is a Protagonist: Residue Conformational Preferences in High-Resolution Protein Structures
每个人都是主角:高分辨率蛋白质结构中的残基构象偏好
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Mathias Joachim Krause其他文献

Privatdozent Dr. Mathias Joachim Krause的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Privatdozent Dr. Mathias Joachim Krause', 18)}}的其他基金

Modeling and Simulation of Irradiance for Photobioreactors with Complex Geometry for Exploration of Algal Growth
用于探索藻类生长的复杂几何光生物反应器的辐照度建模和模拟
  • 批准号:
    322739165
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fundamental investigation of particle-layer rearrangement events in ceramic wall flow filters by resolved particle simulations
通过解析颗粒模拟对陶瓷壁流过滤器中的颗粒层重排事件进行基础研究
  • 批准号:
    422374351
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
CFD-MRI Reactions – A Combined Measurement-Simulation Approach for Reactive Flow Characterization
CFD-MRI 反应 – 用于反应流表征的组合测量模拟方法
  • 批准号:
    517581625
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Increase of efficiency in phosphate recovery by understanding the interaction of flow and loading processes with modeling and simulation
通过建模和模拟了解流动和加载过程的相互作用,提高磷酸盐回收效率
  • 批准号:
    436212129
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Modelling and Simulation of Multidimensional Fractionation in Fine Particle Systems and their Application
细颗粒体系多维分级建模与仿真及其应用
  • 批准号:
    382064892
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    80 万元
  • 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
  • 批准号:
    52111530069
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
  • 批准号:
    62002350
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
  • 批准号:
    82001782
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
  • 批准号:
    62004023
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Development of multi-color 3D super-localization LiveFISH and LiveFISH PAINT to investigate the chromatin dynamics at any genomic scale
开发多色 3D 超定位 LiveFISH 和 LiveFISH PAINT,以研究任何基因组规模的染色质动态
  • 批准号:
    10725002
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of multi-scale topology optimization method considering nonlinear magnetic property
考虑非线性磁特性的多尺度拓扑优化方法的发展
  • 批准号:
    23K13241
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Multitask Image-Natural Language Correspondence Model Development using Large-Scale Medical Image Dataset
使用大规模医学图像数据集开发多任务图像-自然语言对应模型
  • 批准号:
    23K17229
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Multi-scale feedbacks for robust organ development
多尺度反馈促进器官的健全发育
  • 批准号:
    10687672
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of the Multiscale and Multi-electro-chemo-mechanical Lifecycle Evaluation Method of Impressed Current Cathodic Protection Applied to Reinforced Concrete Structures
钢筋混凝土结构外加电流阴极保护多尺度、多电化学-机械生命​​周期评价方法的发展
  • 批准号:
    23K19134
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Multiracial Discrimination Scale: Development and Psychometric Validation of its Associations with Alcohol Use and Misuse among Multiracial Young Adults
多种族歧视量表:其与多种族年轻人饮酒和滥用之间关系的发展和心理测量验证
  • 批准号:
    10824821
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development and implementation of a pediatric AI multi-modal digital stethoscope and respiratory surveillance system in South Africa
在南非开发和实施儿科人工智能多模态数字听诊器和呼吸监测系统
  • 批准号:
    10740943
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development and Testing of a Multi-Component Intervention to Support HIV Care Engagement among Patients Receiving Cancer Treatment in Zimbabwe
开发和测试多成分干预措施以支持津巴布韦接受癌症治疗的患者参与艾滋病毒护理
  • 批准号:
    10700576
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of multi-scale in situ approaches to understand hydrogen embrittlement of engineering alloys at cryogenic temperatures
开发多尺度原位方法来了解工程合金在低温下的氢脆
  • 批准号:
    2897962
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of a novel broad spectrum antifungal therapeutic targeting Glycosylphosphatidylinositol (GPI) biosynthesis and cell wall biogenesis
开发一种针对糖基磷脂酰肌醇 (GPI) 生物合成和细胞壁生物合成的新型广谱抗真菌治疗药物
  • 批准号:
    10759723
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了