AI enhanced adaptive tutoring system by generating individualized questions and answers based on cognitive diagnostic assessment
人工智能通过基于认知诊断评估生成个性化问题和答案来增强自适应辅导系统
基本信息
- 批准号:20J15339
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2020
- 资助国家:日本
- 起止时间:2020-04-24 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This year I continue the work on learner's knowledge assessment (LKA). I have further explored the research of fine-grained assessment and interpretability. Improved on my previous work [BESC’20], I propose a novel model that can not only output the learners’ fine-grained knowledge states but also the item characteristics, enabling the interpretability. Extensive model analyses conducted from six perspectives on five real-world datasets validate its superiority. This work has been published in a top journal [Neurocomputing].Another work solves the fundamental issues of data sparseness and information loss while improving the model performance. It has explored to incorporate the knowledge structure (KS) into the LKA to potentially resolve the above issues. This work automatically generates the KS from the learning logs and proposes a novel graph model with the attention mechanism. Extensive experiments show the effectiveness. This work has been published in a top journal [IJIS].The above work stimulates a new idea of multimodal learning analysis. I have published a review paper about the empirical evidence on the usage of multimodal analysis to provide insights for smarter education. I also participated in a work published in [ICCE’21], in which a graph-based method is proposed for LKA.I also finished my doctoral thesis, in which I summarize my PhD works. Overall, it proposes a general framework for dynamic LKA by integrating both learner and domain modeling. Based on this framework, it proposes three approaches, each addressing one specific issue in existing studies.
今年,我继续学习者知识评估(LKA)的工作。我进一步探讨了细粒度评估和可解释性的研究。改进我以前的工作[BESC'20],我提出了一个新的模型,不仅可以输出学习者的细粒度的知识状态,而且项目的特征,使可解释性。从六个角度对五个真实世界数据集进行了广泛的模型分析,验证了其优越性。这项工作已经发表在顶级期刊[Neurocomputing]上。另一项工作解决了数据稀疏和信息丢失的基本问题,同时提高了模型性能。它已探索将知识结构(KS)纳入LKA,以潜在地解决上述问题。本文从学习日志中自动生成知识库,并提出了一种新的具有注意力机制的图模型。大量的实验证明了该方法的有效性。本文的研究成果已发表在国际权威期刊《IJIS》上,为多模态学习分析提供了一种新的思路。我发表了一篇关于使用多模态分析的经验证据的评论文章,为更智能的教育提供见解。我还参与了发表在[ICCE'21]上的一项工作,其中提出了一种基于图的LKA方法。我还完成了我的博士论文,其中总结了我的博士工作。总体而言,它提出了一个通用的框架,动态LKA集成学习者和领域建模。基于这一框架,它提出了三种方法,每一种方法解决现有研究中的一个具体问题。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Knowledge structure enhanced graph representation learning model for attentive knowledge tracing
- DOI:10.1002/int.22763
- 发表时间:2021-11
- 期刊:
- 影响因子:7
- 作者:Wenbin Gan;Yuan Sun;Yi Sun
- 通讯作者:Wenbin Gan;Yuan Sun;Yi Sun
Modeling learner’s dynamic knowledge construction procedure and cognitive item difficulty for knowledge tracing
- DOI:10.1007/s10489-020-01756-7
- 发表时间:2020-07
- 期刊:
- 影响因子:5.3
- 作者:Wenbin Gan;Yuan Sun;Xian Peng;Yi Sun
- 通讯作者:Wenbin Gan;Yuan Sun;Xian Peng;Yi Sun
Improving Knowledge Tracing through Embedding based on Metapath
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Chong Jiang;Wenbin Gan;Guiping Su;Yuan Sun;Yi Sun
- 通讯作者:Chong Jiang;Wenbin Gan;Guiping Su;Yuan Sun;Yi Sun
Knowledge Interaction Enhanced Knowledge Tracing for Learner Performance Prediction
- DOI:10.1109/besc51023.2020.9348285
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Wenbin Gan;Yuan Sun;Yi Sun
- 通讯作者:Wenbin Gan;Yuan Sun;Yi Sun
Knowledge interaction enhanced sequential modeling for interpretable learner knowledge diagnosis in intelligent tutoring systems
- DOI:10.1016/j.neucom.2022.02.080
- 发表时间:2022-03
- 期刊:
- 影响因子:6
- 作者:Wenbin Gan;Yuan Sun;Yi Sun
- 通讯作者:Wenbin Gan;Yuan Sun;Yi Sun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GAN Wenbin其他文献
GAN Wenbin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Cognitive Diagnosis in E-Learning: A Nonparametric Approach for Computerized Adaptive Testing
职业:电子学习中的认知诊断:计算机自适应测试的非参数方法
- 批准号:
2423762 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant
Identification and Estimation of Dynamic Restricted Latent Class Models for Cognitive Diagnosis
用于认知诊断的动态受限潜在类别模型的识别和估计
- 批准号:
2150628 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant
CAREER: Cognitive Diagnosis in E-Learning: A Nonparametric Approach for Computerized Adaptive Testing
职业:电子学习中的认知诊断:计算机自适应测试的非参数方法
- 批准号:
2302406 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant
General Cognitive Diagnosis Models: Development, Estimation, and Applications
一般认知诊断模型:开发、估计和应用
- 批准号:
2150601 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Development and application of cognitive diagnosis models for tailor-made learning environment
定制学习环境认知诊断模型的开发与应用
- 批准号:
22K13810 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Bayesian Inference for Attribute Hierarchy in Cognitive Diagnosis Models
认知诊断模型中属性层次的贝叶斯推理
- 批准号:
2051198 - 财政年份:2021
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Development of test models for cognitive diagnosis and learning supports using information terminals
使用信息终端开发认知诊断和学习支持的测试模型
- 批准号:
18J01312 - 财政年份:2018
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Developing test items for cognitive diagnosis: With achievement level descriptors and students' errors
开发认知诊断测试项目:使用成绩水平描述符和学生的错误
- 批准号:
19K21018 - 财政年份:2018
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Cognitive Diagnosis Models: Identifiability, Estimation, and Applications
认知诊断模型:可识别性、估计和应用
- 批准号:
1659328 - 财政年份:2017
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
CAREER: Cognitive Diagnosis in E-Learning: A Nonparametric Approach for Computerized Adaptive Testing
职业:电子学习中的认知诊断:计算机自适应测试的非参数方法
- 批准号:
1552563 - 财政年份:2016
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant