Geometry of arithmetic varieties and arithmetic positivity

算术品种的几何和算术积极性

基本信息

  • 批准号:
    20K03548
  • 负责人:
  • 金额:
    $ 2.33万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2020
  • 资助国家:
    日本
  • 起止时间:
    2020-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

令和4年度は、論文「Differentiability of the arithmetic volume function for pairs」を雑誌に投稿し査読中である。この論文で、アデール的因子と基底条件の巨大な組の空間の上の数論的体積関数について、カルティエ素因子Y方向の微分可能性(Y巨大錐の内部にある場合)とY巨大錐の境界上でのY方向の片側微分可能性(ネフかつY巨大なアデール的因子の場合)を確立した。さらに、一般に巨大な組に対して、数論的正値交点数についての直交関係式を証明した。これは、数論的ザリスキー分解の正部分と負部分の直交性の一般化にあたる。特に、Eを効果的なカルティエ因子とするとき、ネフかつE巨大なアデール的因子において、Yに沿って特異性を持つような特異関数に沿った片側微分可能性を示した。言い換えると、ネフかつE巨大なアデール的因子において、大域切断の空間は変更せず、そのノルムをアデール的Eグリーン関数による部分ノルムに変更するとき、数論的体積関数が片側微分可能で、その微分係数が数論的制限正値交点数で与えられるということである。残る問題として、数論的制限正値交点数の、Yに沿った重複度が0の境界上での連続性(ネフかつY巨大な場合はすでに示したので、一般のY巨大な場合)とY巨大でない組での連続性について、鋭意解決していきたい。また、この微分可能性の結果を代数多様体上の有理点の問題に応用すること、ユアン・ジャンの準射影的代数多様体上の数論的交叉理論との関係についても鋭意研究を進めている。令和4年度9月にスペインマドリードのICMATで開催された「Arakelov intercity seminar 2022 at ICMAT」に参加し、特に数論的制限正値交点数の境界上での連続性に関して、研究成果を発表した。
In the 4th year of Reiwa, the paper "Differentiability of the arithmetic volume function for pairs" was submitted by Haruji Shi and has been reviewed.このpaperで、アデール's factor とBasic condition の huge な group のspace の上のNumber theory's volume correlation number について、カルティエprime factor のdifferential possibility in the Y direction (Y The possibility of the sheet side differential in the Y direction on the realm of the giant cone (the situation inside the giant cone) and the realm of the huge cone (the situation of the factor of the huge cone) are established.さらに, general に huge な group に対して, number theory's positive value intersection number につ い て の orthogonal relation を proof し た.これは, the generalization of the orthogonality of the positive part and the negative part of the ザリスキー decomposition of number theory, にあたる. Special に, E を effect of the なカルティエ factor とするとき, ネフかつE huge なアデール factor において, Y に edge っ て specificity を holder つ よ う な specific off number に edge っ た sheet side differential possibility を show し た. Words changed by Toto, Nougat E huge Nana's factor Toto, Odo Kiri Breaking space は変せず、そのノルムをアデール's Eグリーンkanshu によるPartial ノルムに変change するとき, volume-related number of number theory が sheet-side differential possibility で, そのdifferential coefficient が limit of number theory positive value intersection number で and えられるということである. Residual problem, the limit of number theory, the number of positive intersection points, Y's edge, the repeatability of 0, the continuity of the field (the Y's huge field)合はすでに Shows したので、General のY huge な occasion) とY huge でない group での连続性について、鋭意solved していきたい.また、このThe result of differential possibilityのThe problem of rational point on the algebraic polyhedral bodyに応用すること、ユアン・ジThe cross-theory of number theory on the algebraic polyhedral of quasi-projection and the research on the relationship between them are carried out. "Arakelov intercity seminar 2022 at Reiwa 4 September" ICMAT" is a participant, the special number theory is based on the restriction of positive value intersection number, and the research results are listed in the table.

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On subfiniteness of graded linear series
关于分级线性级数的亚有限性
  • DOI:
    10.1007/s40879-019-00349-0
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Chen Huayi;Ikoma Hideaki
  • 通讯作者:
    Ikoma Hideaki
Differentiability of the arithmetic volume function for pairs
算术体积函数对的可微性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Huayi;Ikoma Hideaki;Hideaki Ikoma
  • 通讯作者:
    Hideaki Ikoma
IMJ-PRG(フランス)
IMJ-PRG(法国)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
The Mordell Conjecture: A Complete Proof from Diophantine Geometry
莫德尔猜想:丢番图几何的完整证明
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hideaki Ikoma;Shu Kawaguchi;Atsushi Moriwaki
  • 通讯作者:
    Atsushi Moriwaki
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

生駒 英晃其他文献

モーデル‐ファルティングスの定理 : ディオファントス幾何からの完全証明
Mordell-Faltings 定理:丢番图几何的完整证明
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    川口 周;森脇 淳;生駒 英晃
  • 通讯作者:
    生駒 英晃
Noether inequality for algebraic threefolds
代数三重的诺特不等式
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    川口 周;森脇 淳;生駒 英晃;Christopher D. Hacon and Chen Jiang;Chen Jiang
  • 通讯作者:
    Chen Jiang
Boundedness of K-semistable Q-Fano varieties with degrees bounded from below
K-半稳定 Q-Fano 簇的有界性,度数自下而上
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    川口 周;森脇 淳;生駒 英晃;Christopher D. Hacon and Chen Jiang;Chen Jiang;Chen Jiang;Chen Jiang
  • 通讯作者:
    Chen Jiang
On Fujita invariants of subvarieties of a uniruled variety
论无规则品种亚品种的藤田不变量
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    川口 周;森脇 淳;生駒 英晃;Christopher D. Hacon and Chen Jiang
  • 通讯作者:
    Christopher D. Hacon and Chen Jiang
Perverse sheaves of triangulated categories and Bridgeland stability
三角类别的反常滑轮和布里奇兰稳定性
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    川口 周;森脇 淳;生駒 英晃;MATSUMOTO YUYA;Will Donovan
  • 通讯作者:
    Will Donovan

生駒 英晃的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('生駒 英晃', 18)}}的其他基金

アラケロフ幾何の研究
阿拉克洛夫几何研究
  • 批准号:
    13J01895
  • 财政年份:
    2013
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
  • 批准号:
    2412346
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
Discrete Geometry and Convexity
离散几何和凸性
  • 批准号:
    2349045
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
  • 批准号:
    2342225
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Continuing Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
  • 批准号:
    2401164
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
  • 批准号:
    2401472
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
  • 批准号:
    2402099
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Fellowship Award
Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
  • 批准号:
    2333970
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
CAREER: Large scale geometry and negative curvature
职业:大规模几何和负曲率
  • 批准号:
    2340341
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Continuing Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
  • 批准号:
    2340394
  • 财政年份:
    2024
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了