Surface height profile imaging with optically trapped spheres
使用光学捕获球进行表面高度轮廓成像
基本信息
- 批准号:325733426
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Surfaces play a special role in nature and technology, since they do not only separate outside from inside, but control chemical reactions, and regulate the exchange of pressure, light, heat, and moisture. To understand the properties of surfaces on a molecular scale, special measurement technology is required to spatially probe and resolve smallest structures without destroying them. Several different scanning probe microscopy (SPM) techniques, among which the most prominent are the atomic force microscope (AFM) and the scanning tunneling microscope (STM), illustrate the enormous demand for imaging surfaces with the most various structures, features and functions. However, despite the impressive success-story of AFM technology, it turned out that the tips of AFM cantilevers are often too stiff for many applications, thus damaging the soft sample. Similar to AFM, but much more sensitive, an optically trapped probe can be scanned across a structured surface to measure the height profile from the displacements of the probe. This technique is called Photonic Force Microscopy (PFM). Optical traps have been playing important roles in the bio-nano-sciences due to their ability to flexibly apply smallest forces on tiny structures in fluid environments. Combined with advanced 3D particle tracking techniques such as back-focal-plane interferometry, they allow sensing miniscule forces exerted on these structures. In a recent publication (Friedrich 2015) we have demonstrated that by a combination of a time-shared twin-optical trap and nanometer-precise three-dimensional interferometric particle tracking reliable height-profiling and surface imaging is possible with a spatial resolution below the diffraction limit. This technique exploits the high energy thermal position fluctuations of the trapped probe, leading to a sampling of the surface 5000 times softer than in AFM. In this research proposal we aim to improve the PFM technology in three different directions: First, the spatial resolution shall be improved significantly, by using smaller probes, which requires a short (green) laser wavelength to stably trap them. Second, the so-called tapping mode shall be implemented, where the probe is oscillated vertically with the goal to reduce the probe sticking and to increase the scanning velocity. A third goal is to expand the range of applications for this scanning probe microscopy by imaging also opaque surfaces, which requires precise optical trapping and tracking of the probe also in reflection mode.
表面在自然和技术中扮演着特殊的角色,因为它们不仅将外部和内部分开,而且控制化学反应,调节压力、光、热和水分的交换。为了在分子尺度上了解表面的性质,需要特殊的测量技术来在不破坏最小结构的情况下对其进行空间探测和解析。几种不同的扫描探针显微镜(SPM)技术,其中最突出的是原子力显微镜(AFM)和扫描隧道显微镜(STM),说明了对具有最不同结构、特征和功能的成像表面的巨大需求。然而,尽管AFM技术取得了令人印象深刻的成功故事,但事实证明,AFM悬臂的尖端往往太硬,不适合许多应用,因此损坏了柔软的样品。与AFM类似,但更灵敏的是,光学捕获的探头可以扫描结构表面,根据探头的位移测量高度分布。这种技术被称为光子力显微镜(PFM)。光学陷阱由于能够在流体环境中对微小结构施加最小的作用力而在生物纳米科学中发挥着重要的作用。结合先进的3D粒子跟踪技术,如背焦平面干涉测量,它们可以传感施加在这些结构上的微小作用力。在最近的一份出版物(Friedrich 2015)中,我们展示了通过分时双光圈和纳米级精确的三维干涉粒子跟踪的组合,可靠的高度轮廓和表面成像是可能的,空间分辨率低于衍射极限。这项技术利用了被捕获的探测器的高能热位置波动,导致对表面的采样比AFM中的采样要软5000倍。在这项研究方案中,我们的目标是从三个不同的方向改进PFM技术:第一,通过使用更小的探测器来显著提高空间分辨率,这需要短(绿)激光波长来稳定地捕获它们。第二,实行所谓的攻丝模式,即探头垂直摆动,目的是减少探头卡住,提高扫描速度。第三个目标是通过对不透明表面成像来扩大这种扫描探头显微镜的应用范围,这需要在反射模式下对探头进行精确的光学捕获和跟踪。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Alexander Rohrbach其他文献
Professor Dr. Alexander Rohrbach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Alexander Rohrbach', 18)}}的其他基金
Spatiotemporal Corona virus binding dynamics and infection mechanism investigated with 100 Hz ROCS microscopy and thermal fluctuation analysis
利用 100 Hz ROCS 显微镜和热波动分析研究时空冠状病毒结合动力学和感染机制
- 批准号:
458687324 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grants
Fast super-resolution microscopy by rotating, coherently scattered laser light
通过旋转、相干散射激光实现快速超分辨率显微镜
- 批准号:
413220392 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Energetic investigations of induced particle uptake in functionalized, synthetic membrane systems.
对功能化合成膜系统中诱导颗粒吸收的积极研究。
- 批准号:
280366404 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Investigation of MreB dynamics and cell wall synthesis in B. subtilis using superresolution microscopy and optical-mechanical manipulation techniques
使用超分辨率显微镜和光学机械操作技术研究枯草芽孢杆菌中的 MreB 动力学和细胞壁合成
- 批准号:
262837402 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Feedback holographic control of self-reconstructing laser beams in strongly scattering media.
强散射介质中自重建激光束的反馈全息控制。
- 批准号:
239839440 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Cellular mechanics of particle binding and phagocytosis investigated by photonic force microscopy and high-speed imaging
通过光子力显微镜和高速成像研究颗粒结合和吞噬作用的细胞力学
- 批准号:
189771364 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Momentum transfer through synthesized biopolymer network meshes with optically trapped anchor points
通过具有光学捕获锚点的合成生物聚合物网络网格进行动量传递
- 批准号:
179729698 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Messung der dreidimensionalen Wechselwirkungsdynamik zweier kolloidaler Partikel in beschränkten Volumina mittels interferometrischem Tracking
使用干涉跟踪测量有限体积内两种胶体颗粒的三维相互作用动力学
- 批准号:
123863781 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
The influence of particulate matter properties on the biophysical entry mechanisms into lung cells
颗粒物特性对肺细胞生物物理进入机制的影响
- 批准号:
448780159 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Adaptive interferometric light-sheets for resolution enhanced imaging with and without labeling
自适应干涉光片,用于带或不带标记的分辨率增强成像
- 批准号:
269858105 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Metabolic Alteration in Presymptomatic and Symptomatic ALS Study (MAPS ALS Study)
症状前和症状性 ALS 研究中的代谢改变(MAPS ALS 研究)
- 批准号:
10644489 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Biomechanical Evaluation of a Novel, Compliant Low Profile Prosthetic Foot
新型、合规的薄型假足的生物力学评估
- 批准号:
10758936 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Microfluidic platform for gene delivery into the T-cells
用于将基因传递至 T 细胞的微流体平台
- 批准号:
10011520 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Dissecting interactions across gene regulatory layers in single cells
剖析单细胞基因调控层之间的相互作用
- 批准号:
10386536 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Dissecting interactions across gene regulatory layers in single cells
剖析单细胞基因调控层之间的相互作用
- 批准号:
9796939 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Dissecting interactions across gene regulatory layers in single cells
剖析单细胞基因调控层之间的相互作用
- 批准号:
10642832 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Dissecting interactions across gene regulatory layers in single cells
剖析单细胞基因调控层之间的相互作用
- 批准号:
10428588 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Dissecting interactions across gene regulatory layers in single cells
剖析单细胞基因调控层之间的相互作用
- 批准号:
9982342 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Preconceptional health of Latinas and its association with child adiposity
拉丁裔的孕前健康状况及其与儿童肥胖的关系
- 批准号:
10441212 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Preconceptional health of Latinas and its association with child adiposity
拉丁裔的孕前健康状况及其与儿童肥胖的关系
- 批准号:
10188517 - 财政年份:2018
- 资助金额:
-- - 项目类别: