Adaptive interferometric light-sheets for resolution enhanced imaging with and without labeling

自适应干涉光片,用于带或不带标记的分辨率增强成像

基本信息

项目摘要

Understanding light matter interaction is of significant importance in modern imaging systems. This is the more the case, the larger and stronger scattering the object is that need to be investigated. Light propagation through weekly absorbing matter primarily changes the phase of light. Therefore phase correcting, adaptive optics has been used in astronomy for quite a while, but recently also in modern optical microscopy. Hence, also in light sheet based microscopy spatial light modulators are used to modulate the phase and the intensity of illumination beams, enabling in principle many advantages to 3-D image acquisition. In this context, Bessel beams with their conical phase profile reveal an amazing capability of beam self-reconstruction and a penetration depth which is increased by about 50% relative to conventional Gaussian beams. However, around their narrow main intensity peak, Bessel beams carry a concentric ring system, which results in a loss of image contrast in light sheet microscopy, if no special tricks are applied. In this proposal we want to use linear and nonlinear optical methods to improve the quality of illumination beams in light sheet microscopy by investigating the dependency of computer- holographically generated phase profiles on the beam propagation properties. By using nonlinear optical concepts, we aim to improve the quality of single laser beams and thereby of the illuminating light sheet, such that the influence of the Bessel beams ring system is nonlinearly suppressed. On the one hand we will use the principle of two-photon fluorescence excitation, where especially the influence of the holographically shaped phase on the propagation of short laser pulses through the scattering medium is to be investigated. On the other hand, we will apply the STED-principle, where we will use a second self-reconstructing Bessel beam of higher order to deplete the fluorescence in the ring system by stimulated emission. Here, we want to minimize the thickness of the light sheet and thereby to maximize the optical resolution by improving the depletion efficiency. In a second step, we want to optimize the phase profiles of the excitation beam and the STED- beam by a feedback holographic control, such that the fluorescence generated in the single beams will be improved significantly and thereby the quality of the light sheet.
理解光物质相互作用在现代成像系统中具有重要意义。这是越多的情况下,更大和更强的散射的对象是需要研究的。光通过弱吸收物质的传播主要改变光的相位。因此,相位校正,自适应光学已经在天文学中使用了相当长的一段时间,但最近也在现代光学显微镜。因此,同样在基于光片的显微镜中,空间光调制器用于调制照明光束的相位和强度,从而在原理上使得能够实现3D图像采集的许多优点。在这种情况下,贝塞尔光束的锥形相位轮廓揭示了一个惊人的能力,光束的自我重建和穿透深度增加了约50%,相对于传统的高斯光束。然而,在其狭窄的主强度峰周围,贝塞尔光束携带同心环系统,这导致在光片显微镜中的图像对比度的损失,如果没有特殊的技巧被应用。在这个建议中,我们希望使用线性和非线性光学方法,以改善照明光束的质量,在光片显微镜通过调查的依赖性的计算机全息产生的相位分布的光束传播特性。通过使用非线性光学的概念,我们的目标是提高单激光束的质量,从而提高照明光片的质量,使得贝塞尔光束环系统的影响被非线性地抑制。一方面,我们将使用双光子荧光激发的原理,特别是全息成形相位对短激光脉冲通过散射介质的传播的影响将被研究。另一方面,我们将应用STED原理,其中我们将使用高阶的第二自重构贝塞尔光束通过受激发射来耗尽环系统中的荧光。这里,我们希望最小化光片的厚度,从而通过提高耗尽效率来最大化光学分辨率。在第二步骤中,我们想要通过反馈全息控制来优化激发光束和STED光束的相位分布,使得在单个光束中产生的荧光将被显著改善,从而改善光片的质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Alexander Rohrbach其他文献

Professor Dr. Alexander Rohrbach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Alexander Rohrbach', 18)}}的其他基金

Spatiotemporal Corona virus binding dynamics and infection mechanism investigated with 100 Hz ROCS microscopy and thermal fluctuation analysis
利用 100 Hz ROCS 显微镜和热波动分析研究时空冠状病毒结合动力学和感染机制
  • 批准号:
    458687324
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fast super-resolution microscopy by rotating, coherently scattered laser light
通过旋转、相干散射激光实现快速超分辨率显微镜
  • 批准号:
    413220392
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Surface height profile imaging with optically trapped spheres
使用光学捕获球进行表面高度轮廓成像
  • 批准号:
    325733426
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Energetic investigations of induced particle uptake in functionalized, synthetic membrane systems.
对功能化合成膜系统中诱导颗粒吸收的积极研究。
  • 批准号:
    280366404
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Investigation of MreB dynamics and cell wall synthesis in B. subtilis using superresolution microscopy and optical-mechanical manipulation techniques
使用超分辨率显微镜和光学机械操作技术研究枯草芽孢杆菌中的 MreB 动力学和细胞壁合成
  • 批准号:
    262837402
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Feedback holographic control of self-reconstructing laser beams in strongly scattering media.
强散射介质中自重建激光束的反馈全息控制。
  • 批准号:
    239839440
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Cellular mechanics of particle binding and phagocytosis investigated by photonic force microscopy and high-speed imaging
通过光子力显微镜和高速成像研究颗粒结合和吞噬作用的细胞力学
  • 批准号:
    189771364
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Momentum transfer through synthesized biopolymer network meshes with optically trapped anchor points
通过具有光学捕获锚点的合成生物聚合物网络网格进行动量传递
  • 批准号:
    179729698
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Messung der dreidimensionalen Wechselwirkungsdynamik zweier kolloidaler Partikel in beschränkten Volumina mittels interferometrischem Tracking
使用干涉跟踪测量有限体积内两种胶体颗粒的三维相互作用动力学
  • 批准号:
    123863781
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
The influence of particulate matter properties on the biophysical entry mechanisms into lung cells
颗粒物特性对肺细胞生物物理进入机制的影响
  • 批准号:
    448780159
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Ultrasonic-tagged remote interferometric flowmetry for brain activity
用于大脑活动的超声波标记远程干涉流量测量
  • 批准号:
    10731255
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Interferometric Plasmon Ruler for Elucidating Structural Dynamics on the SingleMolecule Level
用于阐明单分子水平结构动力学的干涉等离子体尺
  • 批准号:
    10707027
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Interferometric Plasmon Ruler for Elucidating Structural Dynamics on the SingleMolecule Level
用于阐明单分子水平结构动力学的干涉等离子体尺
  • 批准号:
    10450310
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
TRD2: Interferometric Near Infrared Spectroscopy (iNIRS)
TRD2:干涉近红外光谱 (iNIRS)
  • 批准号:
    10649467
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
TRD2: Interferometric Near Infrared Spectroscopy (iNIRS)
TRD2:干涉近红外光谱 (iNIRS)
  • 批准号:
    10424948
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Interferometric Speckle Visibility Spectroscopy for Brain Activity Associated Cerebral Blood Flow Monitoring
用于脑活动相关脑血流监测的干涉散斑可见光谱
  • 批准号:
    10294139
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Interferometric, acousto-optic modulated diffuse correlation spectroscopy @ 1064 nm (AOM-iDCS) toward higher sensitivity, non-invasive measurement of cerebral blood flow
干涉、声光调制漫相关光谱 @ 1064 nm (AOM-iDCS) 实现更高灵敏度、非侵入性脑血流测量
  • 批准号:
    10065091
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Interferometric, acousto-optic modulated diffuse correlation spectroscopy @ 1064 nm (AOM-iDCS) toward higher sensitivity, non-invasive measurement of cerebral blood flow
干涉、声光调制漫相关光谱 @ 1064 nm (AOM-iDCS) 实现更高灵敏度、非侵入性脑血流测量
  • 批准号:
    10251073
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Development of 3D interferometric super-resolution methods for imaging dynamic, multi-component molecular systems, in single cells and in multi-cellular environments
开发 3D 干涉超分辨率方法,用于在单细胞和多细胞环境中对动态、多组分分子系统进行成像
  • 批准号:
    10245100
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Development of 3D interferometric super-resolution methods for imaging dynamic, multi-component molecular systems, in single cells and in multi-cellular environments
开发 3D 干涉超分辨率方法,用于在单细胞和多细胞环境中对动态、多组分分子系统进行成像
  • 批准号:
    10022131
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了