Feedback holographic control of self-reconstructing laser beams in strongly scattering media.

强散射介质中自重建激光束的反馈全息控制。

基本信息

项目摘要

Light sheet based microscopy has had a strong impact on the development of novel intelligent illumination methods in modern microscopy, which improved 3D image quality significantly. This led to an advance in the areas of developmental biology and 3-D cell biology, but also made the investigation of laser beam propagation through strongly scattering media come to the fore. Recently it could be shown, that the phase profile of a weekly focused laser beam had a strong influence on light scattering in inhomogeneous, weekly absorbing media. In particular, Bessel beams revealed an amazing capability of beam self-reconstruction and a penetration depth which was increased by about 50% relative to conventional Gaussian beams. However, Bessel beams carry a concentric ring system, which results in a loss of image contrast in light sheet microscopy.In this proposal we want to use linear and nonlinear optical methods to improve the quantity of illumination beams in light sheet microscopy by investigating intensively the dependency of computer- holographically generated phase profiles on the beam propagation properties. In the area of linear optics, we aim to develop different read-out procedures for scattered light in different planes. Based on the extracted data, we then want to test and develop different wavefront correction procedures by feedback and iteration. The contrast diminishing influence of the ring system shall be reduced significantly by using a line-confocal detection system.In addition we aim to improve the quality of single laser beams and thereby of the illuminating light sheet by using nonlinear optical approaches, such that the influence of the Bessel beams ring system is nonlinearly suppressed. On the one hand we will use the principle of two-photon fluorescence excitation, where especially the influence of the holographically shaped phase on the propagation of short laser pulses through the scattering medium is to be investigated. On the other hand, we plan to apply the STED-principle, where we will use a second self-reconstructing Bessel beam of higher order to deplete the fluorescence in the ring system by stimulated emission. Here, we want to maximize the optical resolution by improving the depletion efficiency through time-gating in a first step. In a second step, we want to optimize the phase profiles of the excitation beam and the STED- beam by a feedback holographic control, such that fluorescence generated in the single beams will be improved significantly and thereby the quality of the light sheet.
基于光片的显微术对现代显微术中新型智能照明方法的发展产生了巨大影响,显著提高了3D图像质量。这导致了发育生物学和3-D细胞生物学领域的进步,但也使激光束通过强散射介质传播的研究脱颖而出。最近可以表明,弱聚焦激光束的相位分布对光在非均匀弱吸收介质中的散射有很大的影响。特别是,贝塞尔光束揭示了一个惊人的能力,光束的自我重建和穿透深度增加了约50%,相对于传统的高斯光束。然而,贝塞尔光束携带一个同心环系统,这将导致损失的图像对比度在光片显微镜在这个建议中,我们希望使用线性和非线性光学方法来改善照明光束的数量在光片显微镜通过深入研究的依赖性的计算机全息产生的相位分布的光束传输特性。在线性光学领域,我们的目标是为不同平面中的散射光开发不同的读出程序。基于所提取的数据,然后我们想要通过反馈和迭代来测试和开发不同的波前校正程序。采用线共焦探测系统可以显著降低环形系统的对比度衰减影响,并采用非线性光学方法改善单光束质量,从而改善照明光片的质量,从而非线性地抑制贝塞尔光束环形系统的影响。一方面,我们将使用双光子荧光激发的原理,特别是全息成形相位对短激光脉冲通过散射介质的传播的影响将被研究。另一方面,我们计划应用STED原理,在该原理中,我们将使用第二个高阶自重构贝塞尔光束通过受激发射来耗尽环系统中的荧光。在这里,我们希望通过在第一步中通过时间选通提高耗尽效率来最大化光学分辨率。在第二步骤中,我们想要通过反馈全息控制来优化激发光束和STED光束的相位分布,使得在单个光束中产生的荧光将被显著改善,从而改善光片的质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Alexander Rohrbach其他文献

Professor Dr. Alexander Rohrbach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Alexander Rohrbach', 18)}}的其他基金

Spatiotemporal Corona virus binding dynamics and infection mechanism investigated with 100 Hz ROCS microscopy and thermal fluctuation analysis
利用 100 Hz ROCS 显微镜和热波动分析研究时空冠状病毒结合动力学和感染机制
  • 批准号:
    458687324
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fast super-resolution microscopy by rotating, coherently scattered laser light
通过旋转、相干散射激光实现快速超分辨率显微镜
  • 批准号:
    413220392
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Surface height profile imaging with optically trapped spheres
使用光学捕获球进行表面高度轮廓成像
  • 批准号:
    325733426
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Energetic investigations of induced particle uptake in functionalized, synthetic membrane systems.
对功能化合成膜系统中诱导颗粒吸收的积极研究。
  • 批准号:
    280366404
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Investigation of MreB dynamics and cell wall synthesis in B. subtilis using superresolution microscopy and optical-mechanical manipulation techniques
使用超分辨率显微镜和光学机械操作技术研究枯草芽孢杆菌中的 MreB 动力学和细胞壁合成
  • 批准号:
    262837402
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Cellular mechanics of particle binding and phagocytosis investigated by photonic force microscopy and high-speed imaging
通过光子力显微镜和高速成像研究颗粒结合和吞噬作用的细胞力学
  • 批准号:
    189771364
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Momentum transfer through synthesized biopolymer network meshes with optically trapped anchor points
通过具有光学捕获锚点的合成生物聚合物网络网格进行动量传递
  • 批准号:
    179729698
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Messung der dreidimensionalen Wechselwirkungsdynamik zweier kolloidaler Partikel in beschränkten Volumina mittels interferometrischem Tracking
使用干涉跟踪测量有限体积内两种胶体颗粒的三维相互作用动力学
  • 批准号:
    123863781
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
The influence of particulate matter properties on the biophysical entry mechanisms into lung cells
颗粒物特性对肺细胞生物物理进入机制的影响
  • 批准号:
    448780159
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Adaptive interferometric light-sheets for resolution enhanced imaging with and without labeling
自适应干涉光片,用于带或不带标记的分辨率增强成像
  • 批准号:
    269858105
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

超弦/M-理论、粒子物理相关问题的研究
  • 批准号:
    11105138
  • 批准年份:
    2011
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
光折变晶体存储器的双色多重存储技术研究
  • 批准号:
    60377003
  • 批准年份:
    2003
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目

相似海外基金

PixelCam and HoloCam: Automated Quality Control for High Volume Holographic Optical Element Manufacture. Enabling the Next Generation of Automotive Head-up Displays.
PixelCam 和 HoloCam:大批量全息光学元件制造的自动化质量控制。
  • 批准号:
    10029924
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Comprehensive and multi-resolution mapping of cell morphology and wiring through X-ray holographic nano-tomography
通过 X 射线全息纳米断层扫描对细胞形态和布线进行全面的多分辨率绘图
  • 批准号:
    10376584
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Holographic imprinting of novelty detection in mice
小鼠新颖性检测的全息印记
  • 批准号:
    9910718
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Holographic imprinting of novelty detection in mice
小鼠新颖性检测的全息印记
  • 批准号:
    10023434
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
3D Holographic Guidance, Navigation, and Control (3D GN&C) for Endovascular Aortic Repair (EVAR)
3D 全息制导、导航和控制 (3D GN
  • 批准号:
    10001634
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
In-line digital holographic microscopy for automated QC and process control in cell therapy manufacturing
用于细胞治疗制造中自动化质量控制和过程控制的在线数字全息显微镜
  • 批准号:
    133424
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Feasibility Studies
Holographic spin control of slow neutrons by magnetic nanocomposites
磁性纳米复合材料对慢中子的全息自旋控制
  • 批准号:
    17K19072
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Instrument for Holographic Characterization of Protein Aggregates
蛋白质聚集体全息表征仪器
  • 批准号:
    10004914
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
GOALI: Precision Measurement and Control of Machined Surfaces using Digital Holographic Data
GOALI:使用数字全息数据精确测量和控制加工表面
  • 批准号:
    1462292
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A Holographic Module for Multiphoton Microscopes in Neuroscience
神经科学多光子显微镜的全息模块
  • 批准号:
    8980921
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了