Feedback holographic control of self-reconstructing laser beams in strongly scattering media.

强散射介质中自重建激光束的反馈全息控制。

基本信息

项目摘要

Light sheet based microscopy has had a strong impact on the development of novel intelligent illumination methods in modern microscopy, which improved 3D image quality significantly. This led to an advance in the areas of developmental biology and 3-D cell biology, but also made the investigation of laser beam propagation through strongly scattering media come to the fore. Recently it could be shown, that the phase profile of a weekly focused laser beam had a strong influence on light scattering in inhomogeneous, weekly absorbing media. In particular, Bessel beams revealed an amazing capability of beam self-reconstruction and a penetration depth which was increased by about 50% relative to conventional Gaussian beams. However, Bessel beams carry a concentric ring system, which results in a loss of image contrast in light sheet microscopy.In this proposal we want to use linear and nonlinear optical methods to improve the quantity of illumination beams in light sheet microscopy by investigating intensively the dependency of computer- holographically generated phase profiles on the beam propagation properties. In the area of linear optics, we aim to develop different read-out procedures for scattered light in different planes. Based on the extracted data, we then want to test and develop different wavefront correction procedures by feedback and iteration. The contrast diminishing influence of the ring system shall be reduced significantly by using a line-confocal detection system.In addition we aim to improve the quality of single laser beams and thereby of the illuminating light sheet by using nonlinear optical approaches, such that the influence of the Bessel beams ring system is nonlinearly suppressed. On the one hand we will use the principle of two-photon fluorescence excitation, where especially the influence of the holographically shaped phase on the propagation of short laser pulses through the scattering medium is to be investigated. On the other hand, we plan to apply the STED-principle, where we will use a second self-reconstructing Bessel beam of higher order to deplete the fluorescence in the ring system by stimulated emission. Here, we want to maximize the optical resolution by improving the depletion efficiency through time-gating in a first step. In a second step, we want to optimize the phase profiles of the excitation beam and the STED- beam by a feedback holographic control, such that fluorescence generated in the single beams will be improved significantly and thereby the quality of the light sheet.
基于光板的显微镜对现代显微镜中新型智能照明方法的发展产生了强烈的影响,从而显着提高了3D图像质量。这导致了发育生物学和3-D细胞生物学领域的进步,但也通过强烈散射介质对激光束传播进行了研究。最近,可以证明,每周聚焦激光束的相位曲线对不均匀,每周吸收培养基的光散射有很大的影响。尤其是,贝塞尔束揭示了束自我重建和穿透深度的惊人能力,相对于传统的高斯梁增加了约50%。然而,贝塞尔束带有同心环系统,在光片显微镜中导致图像对比度的损失。在此提案中,我们希望使用线性和非线性光学方法来改善光片显微镜中照明光束的数量,通过深入研究计算机上生成的相位谱图对光束传播属性的依赖性。在线性光学区域,我们旨在为不同平面中的散射光制定不同的读出程序。基于提取的数据,我们希望通过反馈和迭代来测试和制定不同的波前校正程序。通过使用线路相连检测系统,应显着降低环系统的对比度减小。在此外,我们旨在通过使用非线性光学方法来提高单个激光束的质量,从而提高照明光板的质量,以便非线性抑制Bessel Beams环系统的影响。一方面,我们将使用两光子荧光激发的原理,尤其是在该原理中,应研究全息相对短激光脉冲通过散射介质传播的影响。另一方面,我们计划应用Sted-principle,在这里我们将使用第二个自我重建的贝塞尔(Bessel)高阶贝塞尔(Bessel)束来通过刺激的发射来消耗环系统中的荧光。在这里,我们希望通过在第一步中通过时间门网提高耗竭效率来最大化光学分辨率。在第二步中,我们希望通过反馈全息控制来优化激发梁和steD梁的相位曲线,以便在单光束中产生的荧光将得到显着改善,从而大大改善光板的质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Alexander Rohrbach其他文献

Professor Dr. Alexander Rohrbach的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Alexander Rohrbach', 18)}}的其他基金

Spatiotemporal Corona virus binding dynamics and infection mechanism investigated with 100 Hz ROCS microscopy and thermal fluctuation analysis
利用 100 Hz ROCS 显微镜和热波动分析研究时空冠状病毒结合动力学和感染机制
  • 批准号:
    458687324
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fast super-resolution microscopy by rotating, coherently scattered laser light
通过旋转、相干散射激光实现快速超分辨率显微镜
  • 批准号:
    413220392
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Surface height profile imaging with optically trapped spheres
使用光学捕获球进行表面高度轮廓成像
  • 批准号:
    325733426
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Energetic investigations of induced particle uptake in functionalized, synthetic membrane systems.
对功能化合成膜系统中诱导颗粒吸收的积极研究。
  • 批准号:
    280366404
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Investigation of MreB dynamics and cell wall synthesis in B. subtilis using superresolution microscopy and optical-mechanical manipulation techniques
使用超分辨率显微镜和光学机械操作技术研究枯草芽孢杆菌中的 MreB 动力学和细胞壁合成
  • 批准号:
    262837402
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Cellular mechanics of particle binding and phagocytosis investigated by photonic force microscopy and high-speed imaging
通过光子力显微镜和高速成像研究颗粒结合和吞噬作用的细胞力学
  • 批准号:
    189771364
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Momentum transfer through synthesized biopolymer network meshes with optically trapped anchor points
通过具有光学捕获锚点的合成生物聚合物网络网格进行动量传递
  • 批准号:
    179729698
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Messung der dreidimensionalen Wechselwirkungsdynamik zweier kolloidaler Partikel in beschränkten Volumina mittels interferometrischem Tracking
使用干涉跟踪测量有限体积内两种胶体颗粒的三维相互作用动力学
  • 批准号:
    123863781
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
The influence of particulate matter properties on the biophysical entry mechanisms into lung cells
颗粒物特性对肺细胞生物物理进入机制的影响
  • 批准号:
    448780159
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Adaptive interferometric light-sheets for resolution enhanced imaging with and without labeling
自适应干涉光片,用于带或不带标记的分辨率增强成像
  • 批准号:
    269858105
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

氢能重卡用透平空气压缩机流-热耦合机理及能量回收全息最优滑模控制研究
  • 批准号:
    52375045
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向复杂环境的列车自主运行控制状态全息感知理论与关键技术研究
  • 批准号:
    U2268206
  • 批准年份:
    2022
  • 资助金额:
    241.00 万元
  • 项目类别:
    联合基金项目
矢量光束的非线性频率转换及其在全息成像中的控制方法
  • 批准号:
    62105154
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
人机共驾环境下高速公路半挂汽车列车群体自治的盲区全息感知与极限稳定控制
  • 批准号:
    52172350
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
矢量光束的非线性频率转换及其在全息成像中的控制方法
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

PixelCam and HoloCam: Automated Quality Control for High Volume Holographic Optical Element Manufacture. Enabling the Next Generation of Automotive Head-up Displays.
PixelCam 和 HoloCam:大批量全息光学元件制造的自动化质量控制。
  • 批准号:
    10029924
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Comprehensive and multi-resolution mapping of cell morphology and wiring through X-ray holographic nano-tomography
通过 X 射线全息纳米断层扫描对细胞形态和布线进行全面的多分辨率绘图
  • 批准号:
    10376584
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Development of field margin management for both endangered species conservation and pest control
开发用于濒危物种保护和病虫害防治的田间边缘管理
  • 批准号:
    20J14661
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Holographic imprinting of novelty detection in mice
小鼠新颖性检测的全息印记
  • 批准号:
    9910718
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Holographic imprinting of novelty detection in mice
小鼠新颖性检测的全息印记
  • 批准号:
    10023434
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了