Target-specific machine-learning scoring functions for reliable structure-based virtual screening
针对特定目标的机器学习评分功能,用于可靠的基于结构的虚拟筛选
基本信息
- 批准号:EP/X012026/1
- 负责人:
- 金额:$ 79.01万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Drug leads are typically small-sized chemical compounds that tightly bind to a disease-causing protein. As the right key fits into a lock, a drug lead molecule acts by binding to the right pocket of its therapeutic target protein to potently alter its function in a way that positively impacts the associated disease. Academic research excels at discovering promising therapeutic targets. However, discovering drug leads and optimising their potency for a target is an expensive, time-consuming and particularly challenging process, which has traditionally been carried out by pharmaceutical companies with vast resources. This constitutes a barrier to translating innovative biomedical research from academia into new drug candidates, as an optimised lead is required to attract funding for further preclinical and clinical studies via out-licensing or industry partnership. Tools are therefore needed to help academics to bridge this translation gap by reducing the experimental efforts required, or even making it possible, to achieve optimised drug leads for a given target.Docking is a computational technique providing relatively fast predictions of whether and how a molecule binds to an atomic-resolution structure of the target. Very recently, the exploitation of a novel technology generating billions of make-on-demand molecules by classical docking tools have directly achieved a range of diverse and potent drug leads for several targets. Therefore, no lengthy and costly optimisation was subsequently required, thereby strongly reducing the time and cost to provide these optimised drug leads. However, the modest predictive performance of these classical tools is extensively documented. This means that their application to many other targets is likely to be much worse than that in the few targets reported so far. It is now well-known that a way to boost docking performance in other targets is by enhancing it with Artificial Intelligence (AI). Unlike the classical tools, AI models can exploit fast-growing datasets to learn to discriminate between molecules with or without potent activity for the target. AI models are furthermore likely to make drug design even faster and less expensive than the classical tools on those targets where the latter work well.This methodology research project aims at improving target structure-based drug design via the innovative application of AI techniques. We will investigate optimal ways to build target-specific AI models. For the first time, these AI models will be generated in a way that not only predicts how strongly the molecule binds to the target, but also how reliable that prediction is. We will compare the predictive accuracy of these models to that of existing models for any target, whether classical or AI-based, using the most rigorous retrospective assessment practices. We will also investigate to which extent coupling these models with ultrafast, yet less accurate, models can directly provide optimised drug leads in a fraction of the time.The project focuses on those targets for which at least some binding molecules are available. Practically all currently investigated targets have never been analysed with structure-based target-specific AI models. Here we will develop and apply AI models tailored to two of such targets, which are in addition not related to those for which ultra-large library screening has been reported so far. The discovery of the first of these targets, TRPM8, has just been partly awarded the 2021 Nobel Prize in Physiology or Medicine. Drugs targeting TRPM8 should be able to mitigate cold hypersensitivity and pain. The second target, ATM, could be a way to provide new therapeutic options for those suffering from Huntington's disease and various types of cancers including brain tumours.We will provide all the data, codes and documentation to facilitate reproducibility and future research for further improvements on these and related targets.
药物先导物通常是与致病蛋白质紧密结合的小分子化合物。当正确的钥匙适合锁时,药物先导分子通过结合其治疗靶蛋白的右口袋来发挥作用,以积极影响相关疾病的方式有效地改变其功能。学术研究擅长发现有前途的治疗靶点。然而,发现药物先导化合物并优化其对靶点的效力是一个昂贵、耗时且特别具有挑战性的过程,传统上由拥有大量资源的制药公司进行。这构成了将学术界的创新生物医学研究转化为新药候选药物的障碍,因为需要优化的领先优势才能通过外部许可或行业合作关系为进一步的临床前和临床研究吸引资金。因此,需要一些工具来帮助学术界弥合这一翻译差距,减少所需的实验工作,甚至使之成为可能,以实现针对给定靶标的优化药物先导。对接是一种计算技术,可以相对快速地预测分子是否以及如何与靶标的原子分辨率结构结合。最近,通过经典对接工具产生数十亿个按需制造分子的新技术的开发已经直接实现了针对若干靶点的一系列多样且有效的药物先导物。因此,随后不需要冗长和昂贵的优化,从而大大减少了提供这些优化的药物先导物的时间和成本。然而,这些经典工具的适度预测性能被广泛记录。这意味着,它们对许多其他目标的适用情况可能比迄今报告的少数目标差得多。现在众所周知,提高其他目标对接性能的一种方法是通过人工智能(AI)来增强它。与经典工具不同,人工智能模型可以利用快速增长的数据集来学习区分具有或不具有靶点活性的分子。人工智能模型还可能使药物设计比经典工具更快,更便宜,后者工作得很好。本方法学研究项目旨在通过人工智能技术的创新应用来改进基于靶结构的药物设计。我们将研究构建目标特定AI模型的最佳方法。这是第一次,这些人工智能模型的生成方式不仅可以预测分子与靶标结合的强度,还可以预测的可靠性。我们将使用最严格的回顾性评估实践,将这些模型的预测准确性与任何目标的现有模型的预测准确性进行比较,无论是经典模型还是基于AI的模型。我们还将研究在何种程度上将这些模型与超快但不太准确的模型相结合,可以在一小部分时间内直接提供优化的药物线索。该项目侧重于那些至少有一些结合分子可用的靶点。实际上,目前研究的所有目标从未使用基于结构的目标特定AI模型进行过分析。在这里,我们将开发和应用针对其中两个目标量身定制的人工智能模型,这些目标与迄今为止报道的超大库筛选无关。其中第一个靶点TRPM8的发现刚刚被部分授予2021年诺贝尔生理学或医学奖。靶向TRPM8的药物应该能够减轻冷过敏和疼痛。第二个靶点是ATM,它可以为患有亨廷顿病和包括脑肿瘤在内的各种癌症的患者提供新的治疗选择。我们将提供所有的数据、代码和文件,以促进可重复性和未来的研究,进一步改进这些和相关的靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pedro Ballester其他文献
P11. Predictors of Illicit Substance Abuse/Dependence During Young Adulthood: A Machine Learning Approach
- DOI:
10.1016/j.biopsych.2022.02.246 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Taiane Cardoso;Coral Rakovski;Pedro Ballester;Bruno Braga Montezano;Luciano Dias de Mattos Souza;Karen Jansen;Ricardo Azevedo da Silva;Thaise Campos Mondin;Fernanda Pedrotti;Raquel Brandini de Boni;Benicio Frey;Flavio Kapczinski - 通讯作者:
Flavio Kapczinski
286. Genetic Polymorphism of Brain-Derived Neurotrophic Factor is Related to Antidepressant Efficacy and Treatment-Induced Hippocampal Plasticity in Patients With Major Depressive Disorder: CAN-BIND-1 Study
- DOI:
10.1016/j.biopsych.2023.02.526 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Nikita Nogovitsyn;Laura Fiori;Sakina J. Rizvi;Amanda K. Ceniti;Pedro Ballester;Jane A. Foster;Katharine Dunlop;Keith Ho;Stefanie Hassel;Roumen V. Milev;Claudio N. Soares;Stephen C. Strother;Stephen R. Arnott;Raymond W. Lam;Rudolf Uher;Sagar V. Parikh;Faranak Farzan;Valerie H. Taylor;Glenda MacQueen;Daniel J. Mueller - 通讯作者:
Daniel J. Mueller
Identifying Nonlinear Patterns of 5-Year Suicide Risk Incidence in Youth: A Gradient Tree Boosting and SHAP Study
- DOI:
10.1016/j.biopsych.2021.02.705 - 发表时间:
2021-05-01 - 期刊:
- 影响因子:
- 作者:
Taiane Cardoso;Pedro Ballester;Fernanda Pedrotti Moreira;Ricardo Azevedo da Silva;Thaise Campos Mondin;Ricardo M. Araujo;Bruno Braga Montezano;Flavio Kapczinski;Benicio Frey;Karen Jansen;Luciano Dias de Mattos Souza - 通讯作者:
Luciano Dias de Mattos Souza
WCN24-2399 PREDICTORS OF WEIGHT GAIN AFTER ONE YEAR OF KIDNEY TRANSPLANTATION: AN EXPLORATORY STUDY USING MACHINE LEARNING METHOD
- DOI:
10.1016/j.ekir.2024.02.1030 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Camila Corrêa;Júlia de Freitas;Elis Pedrollo;Pedro Ballester;Cristiane Leitão;Gabriela Souza - 通讯作者:
Gabriela Souza
Pedro Ballester的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
新生儿坏死性小肠结肠炎中去泛素化酶USP15调控ILC3分化损伤肠道粘膜屏障的致病机制研究
- 批准号:82371711
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
花胶鱼类物种Species-specific PCR和Multiplex PCR鉴定体系研究
- 批准号:31902373
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
Dravet综合征基因突变分析及突变来源研究
- 批准号:81171221
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
睾丸特异性新基因TSC29的表达调控机制及其功能研究
- 批准号:81170613
- 批准年份:2011
- 资助金额:54.0 万元
- 项目类别:面上项目
RNA结合蛋白CUG-BP1对于mRNA降解的调控机制研究
- 批准号:31000570
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
新生隐球菌减数分裂特异性基因ISC10的生理功能研究
- 批准号:30970130
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
寻找精神分裂症的调节性遗传变异
- 批准号:30870899
- 批准年份:2008
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
PROgression of Tuberculosis infECTion in young children living with and without HIV: the PROTECT study
感染和未感染艾滋病毒的幼儿结核感染的进展:PROTECT 研究
- 批准号:
10641389 - 财政年份:2023
- 资助金额:
$ 79.01万 - 项目类别:
Frontal-thalamo-cerebellar circuitry of attention deficit via imaging-genetic-environmental analyses
通过成像-遗传-环境分析观察注意力缺陷的额叶-丘脑-小脑回路
- 批准号:
10737357 - 财政年份:2023
- 资助金额:
$ 79.01万 - 项目类别:
Identification of blood biomarkers predictive of organ aging
鉴定预测器官衰老的血液生物标志物
- 批准号:
10777065 - 财政年份:2023
- 资助金额:
$ 79.01万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 79.01万 - 项目类别:
Genetics and neurobiology of aggression of Betta splendens
芨芨草攻击行为的遗传学和神经生物学
- 批准号:
10731186 - 财政年份:2023
- 资助金额:
$ 79.01万 - 项目类别:
Characterization of the Neurobiological Profiles of Young Adults with and without Developmental Language Disorder (DLD)
患有和不患有发育性语言障碍 (DLD) 的年轻人的神经生物学特征的表征
- 批准号:
10721464 - 财政年份:2023
- 资助金额:
$ 79.01万 - 项目类别:
Bridging the gap: joint modeling of single-cell 1D and 3D genomics
弥合差距:单细胞 1D 和 3D 基因组学联合建模
- 批准号:
10572539 - 财政年份:2023
- 资助金额:
$ 79.01万 - 项目类别:
Linking endotype and phenotype to understand COPD heterogeneity via deep learning and network science
通过深度学习和网络科学将内型和表型联系起来以了解 COPD 异质性
- 批准号:
10569732 - 财政年份:2023
- 资助金额:
$ 79.01万 - 项目类别:
Single-cell Transcriptomic Analysis of Cell Type Plasticity in Barrel Cortex of Normal and Autism Model Mice
正常和自闭症模型小鼠桶状皮层细胞类型可塑性的单细胞转录组分析
- 批准号:
10750812 - 财政年份:2023
- 资助金额:
$ 79.01万 - 项目类别: