Specialized Adaptive Algorithms for Model Predictive Control of PDEs
用于偏微分方程模型预测控制的专用自适应算法
基本信息
- 批准号:337928467
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Model Predictive Control is a control method in which the solution of optimal control problems on infinite or indefinitely long horizons is split up into the successive solution of optimal control problems on relatively short finite time horizons. Only the first piece of each optimal control us then used in order to synthesize the resulting control function on the infinite horizon. Under suitable conditions, this method can be shown to produce approximately optimal control functions on the infinite horizon. Moreover, due to the successive re-optimization the resulting control is of a feedback type form which provides robustness against model errors and perturbations. Since only the first piece of each optimal control function is used, one can expect that for its numerical computation a high accuracy is only needed at the beginning of the optimization interval while a lower accuracy is sufficient towards its end. The main objective of the proposed project is the construction of numerical algorithms for model predictive control of parabolic partial differential equations which exploit this fact via goal oriented error estimation and adaptivity.The grids, constructed by our algorithm, will reflect the sensitivity of the computed optimal control at the beginning of the control interval with respect to perturbations of the dynamics. We expect that we will obtain a relatively fine discretization near the beginning of the control interval that blends into coarser and coarser discretizations towards the end of this interval. Of course, previous grids are reused as the time-horizon moves on. This will result in an efficient overall method for model predictive control of parabolic PDEs that obtains a near optimal infinite horizon performance with low computational effort.Our strategy is to first establish our method for ODEs and then move on to linear and non-linear parabolic PDEs. The algorithmic development will be combined with theoretical investigations on the sensitivity of the first piece of the optimal control with respect to perturbations of the dynamics. Particularly, we will derive conditions under which we can rigorously prove that the sensitivity of the optimal control decreases over time. This will create a deeper understanding of the newly created algorithms and identify classes of problems for which these algorithms can be applied.
模型预测控制是一种将无限或无限长范围内的最优控制问题的解分解为相对较短的有限时间范围内的最优控制问题的连续解的控制方法。然后,我们只使用每个最优控制的第一部分,以便在无限视界上综合得到的控制函数。在适当的条件下,可以证明该方法在无限视界上产生近似最优控制函数。此外,由于连续的再优化,结果控制是一种反馈型形式,提供了对模型误差和扰动的鲁棒性。由于只使用每个最优控制函数的第一部分,因此可以预期,对于其数值计算,仅在优化区间的开始需要高精度,而在其结束时较低的精度就足够了。提出的项目的主要目标是构建抛物型偏微分方程模型预测控制的数值算法,该算法通过目标导向误差估计和自适应来利用这一事实。由我们的算法构建的网格将反映在控制区间开始时计算出的最优控制相对于动力学扰动的灵敏度。我们期望在接近控制区间的开始处得到一个相对精细的离散化,在接近区间的结束处混合成越来越粗的离散化。当然,随着时间的推移,以前的网格会被重用。这将为抛物型偏微分方程模型预测控制提供一种有效的整体方法,该方法能以较低的计算量获得接近最优的无限水平性能。我们的策略是首先建立我们的ode方法,然后转向线性和非线性抛物型pde。算法的发展将结合理论研究最优控制的第一部分对动力学扰动的敏感性。特别是,我们将推导出一些条件,在这些条件下,我们可以严格证明最优控制的灵敏度随着时间的推移而降低。这将加深对新创建的算法的理解,并确定可以应用这些算法的问题类别。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sensitivity Analysis of Optimal Control for a Class of Parabolic PDEs Motivated by Model Predictive Control
- DOI:10.1137/18m1223083
- 发表时间:2019-01
- 期刊:
- 影响因子:0
- 作者:L. Grüne;M. Schaller;A. Schiela
- 通讯作者:L. Grüne;M. Schaller;A. Schiela
Exponential sensitivity and turnpike analysis for linear quadratic optimal control of general evolution equations
- DOI:10.1016/j.jde.2019.11.064
- 发表时间:2020-06
- 期刊:
- 影响因子:2.4
- 作者:L. Grüne;M. Schaller;A. Schiela
- 通讯作者:L. Grüne;M. Schaller;A. Schiela
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Lars Grüne其他文献
Professor Dr. Lars Grüne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Lars Grüne', 18)}}的其他基金
Model predictive PDE control for energy efficient building operation:Economic model predictive control and time varying systems
节能建筑运行的模型预测 PDE 控制:经济模型预测控制和时变系统
- 批准号:
274853298 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Model Predictive Control for the Fokker-Planck Equation
Fokker-Planck 方程的模型预测控制
- 批准号:
264433583 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Performance Analysis for Distributed and Multiobjective Model Predictive Control — The role of Pareto fronts, multiobjective dissipativity and multiple equilibria
分布式多目标模型预测控制的性能分析 â 帕累托前沿、多目标耗散性和多重均衡的作用
- 批准号:
244602989 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Analyse und Entwurf ereignisbasierter Regelungen mit quantisierten Signalräumen -Vernetzte Systeme-
具有量化信号空间的基于事件的控制的分析和设计 - 网络系统 -
- 批准号:
42799909 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Priority Programmes
Curse-of-dimensionality-free nonlinear optimal feedback control with deep neural networks. A compositionality-based approach via Hamilton-Jacobi-Bellman PDEs
深度神经网络的无维数非线性最优反馈控制。
- 批准号:
463912816 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
Analysis of Random Transport in Chains using Modern Tools from Systems and Control Theory
使用系统和控制理论的现代工具分析链中的随机传输
- 批准号:
470999742 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Adaptive optimization: parameter-free self-tuning algorithms beyond smoothness and convexity
自适应优化:超越平滑性和凸性的无参数自调整算法
- 批准号:
24K20737 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
RTML: Large: Collaborative: Harmonizing Predictive Algorithms and Mixed-Signal/Precision Circuits via Computation-Data Access Exchange and Adaptive Dataflows
RTML:大型:协作:通过计算数据访问交换和自适应数据流协调预测算法和混合信号/精密电路
- 批准号:
2400511 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Developing Algorithms for Object-Adaptive Super-Resolution in Biomedical Imaging
职业:开发生物医学成像中对象自适应超分辨率算法
- 批准号:
2239810 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Designing Bayesian based Adaptive Resource Constrained Hardware Algorithms for Next Generation of Embedded Systems
为下一代嵌入式系统设计基于贝叶斯的自适应资源受限硬件算法
- 批准号:
2890421 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
SWIFT: Advancing Coexistence through a Cross-Layer Design Platform with an Adaptive Frequency-Selective Radio Front-End and Digital Algorithms
SWIFT:通过具有自适应选频无线电前端和数字算法的跨层设计平台促进共存
- 批准号:
2229021 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Adaptive numerical algorithms for PDE problems with random inputs
具有随机输入的偏微分方程问题的自适应数值算法
- 批准号:
2741369 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
ExpandQISE: Track 1: Reimagining Adaptive Quantum Algorithms
ExpandQISE:轨道 1:重新构想自适应量子算法
- 批准号:
2231328 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Self-Adaptive, Unstructured Mesh, NURBS Enhanced, Polyhedral Schemes, with Hybrid Multicore CPU and Manycore GPU Solution Algorithms, for Nuclear Reac
适用于核反应堆的自适应、非结构化网格、NURBS 增强型、多面体方案,具有混合多核 CPU 和众核 GPU 解决方案算法
- 批准号:
2738301 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Collaborative Research: Algorithms for Optimal Adaptive Enrichment Design in Randomized Trial
协作研究:随机试验中最佳自适应富集设计的算法
- 批准号:
2230795 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
CNS Core: Medium: Distributed Runtime Dataplane Telemetry as an Adaptive Query Scheduling Problem: Algorithms and Applications
CNS 核心:中:分布式运行时数据平面遥测作为自适应查询调度问题:算法和应用程序
- 批准号:
2212590 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant