Analysis of Random Transport in Chains using Modern Tools from Systems and Control Theory
使用系统和控制理论的现代工具分析链中的随机传输
基本信息
- 批准号:470999742
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Random transport in chains is often modelled by continuous-time Markov processes on a finite, discrete state-space. In this proposal, we focus on cases where the transition rates of the process are either deterministic and vary periodically in time or are given as random variables. Both cases are well motivated by applications: periodic excitations are ubiquitous in systems biology, where biological organisms are exposed to the 24 hours solar day; in epidemiology where infection rates depend on annual rhythms; and in models of vehicular traffic where traffic lights follow a periodic operating pattern. Random rates are typically used to model uncertainty or variability in the exact values of the rates. For example, a recent paper studied the process of mRNA translation with the transition rates of the ribosomes along the mRNA molecule modeled as random variables. In these and many other application areas, stochastic models of the type we plan to investigate have become very popular. Thus, besides the mathematical analysis of these models, that forms the core of this proposal, applications of the main results to models from biology and physics will also be addressed.Central to the mathematical analysis are different classes of associated large-scale systems of ordinary differential equations. This includes the so-called Master Equation (sometimes also called the Pauli Master equation) as well as mean-field approximations thereof with varying degrees of accuracy. Recent results of the applicants have shown that the solutions of the periodic Master Equation as well as the solutions of certain periodic mean-field approximations in systems biology converge (under suitable conditions) to a unique periodic limit solution. Modern tools from systems and control theory like the theory of cooperative and contractive systems were pivotal for these findings. The applicants also recently proved the existence of a random attractor for a large class of random dynamical systems associated with irreducible, finite-state Markov processes with time-independent transition rates, and plan to extend these results to random dynamical systems with periodic coefficients. Starting from these results, this project aims at:- understanding the behavior of periodically driven stochastic systems for a wide range of model classes: Master Equations, Mean-Field Approximations and Random Dynamical Systems- understanding the relation between these different types of model classes, both qualitatively and quantitatively- designing systems with periodic trajectories with a desirable behavior, e.g., maximal throughput in traffic modelsTo reach this goal, both analytical and numerical methods will be used, with a strong emphasis on methods from mathematical systems and control theory.
链中的随机传输通常由有限的离散状态空间上的连续时间马尔可夫过程来建模。在这个方案中,我们关注过程的转移率是确定性的且随时间周期性变化的情况,或者是作为随机变量给出的情况。这两种情况都有很好的应用动机:周期性刺激在系统生物学中普遍存在,其中生物有机体暴露在24小时太阳日;在流行病学中,感染率取决于年度节律;在车辆交通模型中,交通灯遵循周期性运行模式。随机利率通常用于对利率精确值的不确定性或可变性进行建模。例如,最近的一篇论文以核糖体沿信使核糖核酸分子的转移率为随机变量来研究信使核糖核酸的翻译过程。在这些和许多其他应用领域,我们计划研究的类型的随机模型已经变得非常流行。因此,除了对这些模型的数学分析之外,主要结果也将被应用到生物学和物理学的模型中。数学分析的中心是不同类别的相关大系统的常微分方程组。这包括所谓的主方程(有时也称为泡利主方程)及其具有不同精度的平均场近似。申请人的最新结果表明,系统生物学中周期主方程的解以及某些周期平均场近似的解(在适当的条件下)收敛到唯一的周期极限解。来自系统和控制理论的现代工具,如合作和收缩系统理论,是这些发现的关键。最近,申请者们还证明了一大类随机动力系统的随机吸引子的存在性,这些随机动力系统与具有时间独立转移速率的不可约有限状态马尔可夫过程有关,并计划将这些结果推广到具有周期系数的随机动力系统。从这些结果出发,这个项目的目标是:-了解周期驱动的随机系统在各种模型类别下的行为:主方程、平均场近似和随机动态系统-理解这些不同类型的模型类别之间的关系,无论是定性的还是定量的-设计具有期望行为的周期性轨迹的系统,例如,交通模型中的最大吞吐量为实现这一目标,将使用分析和数值方法,重点是数学系统和控制理论的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Lars Grüne其他文献
Professor Dr. Lars Grüne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Lars Grüne', 18)}}的其他基金
Specialized Adaptive Algorithms for Model Predictive Control of PDEs
用于偏微分方程模型预测控制的专用自适应算法
- 批准号:
337928467 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Model predictive PDE control for energy efficient building operation:Economic model predictive control and time varying systems
节能建筑运行的模型预测 PDE 控制:经济模型预测控制和时变系统
- 批准号:
274853298 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Model Predictive Control for the Fokker-Planck Equation
Fokker-Planck 方程的模型预测控制
- 批准号:
264433583 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Performance Analysis for Distributed and Multiobjective Model Predictive Control — The role of Pareto fronts, multiobjective dissipativity and multiple equilibria
分布式多目标模型预测控制的性能分析 â 帕累托前沿、多目标耗散性和多重均衡的作用
- 批准号:
244602989 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Analyse und Entwurf ereignisbasierter Regelungen mit quantisierten Signalräumen -Vernetzte Systeme-
具有量化信号空间的基于事件的控制的分析和设计 - 网络系统 -
- 批准号:
42799909 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Priority Programmes
Curse-of-dimensionality-free nonlinear optimal feedback control with deep neural networks. A compositionality-based approach via Hamilton-Jacobi-Bellman PDEs
深度神经网络的无维数非线性最优反馈控制。
- 批准号:
463912816 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
Dynamical low-rank approximation for radiation transport with random input
具有随机输入的辐射传输的动态低秩近似
- 批准号:
491976834 - 财政年份:2021
- 资助金额:
-- - 项目类别:
WBP Fellowship
Collaborative Research: Engineering fractional photon transport for random laser devices
合作研究:随机激光设备的分数光子传输工程
- 批准号:
2110204 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Market research of Quantum Random Number Generator-based encryption platform for Cooperative Intelligent Transport Systems (C-ITS)
基于量子随机数生成器的协作智能运输系统(C-ITS)加密平台的市场研究
- 批准号:
34998 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Collaborative R&D
Integrated global random walk model for reactive transport in groundwater adapted to measurement spatio-temporal scales
适合测量时空尺度的地下水反应输运的综合全局随机游走模型
- 批准号:
405338726 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
EAGER: Understanding Molecular Control and Phase Behavior of Random Heteropolymer Materials for Selective Transport
EAGER:了解用于选择性传输的随机杂聚物材料的分子控制和相行为
- 批准号:
1836961 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Workshop on Transport and Localization in Random Media: Theory and Applications
随机媒体传输和定位研讨会:理论与应用
- 批准号:
1804339 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Development of a new fast proxy model for transport in multi-scale heterogeneous porous media based on random walk techniques
基于随机游走技术的多尺度异质多孔介质传输的新型快速代理模型的开发
- 批准号:
402433-2011 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Development of a new fast proxy model for transport in multi-scale heterogeneous porous media based on random walk techniques
基于随机游走技术的多尺度异质多孔介质传输的新型快速代理模型的开发
- 批准号:
402433-2011 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
CAREER: Transport Phenomena in Quantum Systems and Random Media
职业:量子系统和随机介质中的传输现象
- 批准号:
1452349 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Development of a new fast proxy model for transport in multi-scale heterogeneous porous media based on random walk techniques
基于随机游走技术的多尺度异质多孔介质传输的新型快速代理模型的开发
- 批准号:
402433-2011 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual