Surface structures on thin fluid layers of a binary mixture in confined geometries
受限几何形状中二元混合物薄流体层的表面结构
基本信息
- 批准号:34959298
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2006
- 资助国家:德国
- 起止时间:2005-12-31 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A simplified model for a thin film binary mixture was previously developed and based on lubrication approximation. The surface tension was considered as a function of both temperature and concentration. A 2D simplified equation for the concentration (mass conservation equation) was added. We have supposed by heuristic arguments that the temperature was a linear function on the vertical coordinate and that convective and diffusion terms can be neglected. Using these assumptions the model fits well into the theory based on the thin film equation for pure fluids. The spatial dimension is reduced by one and therefore the computing time considerably decreases, allowing for the computation of pattern formation in three dimensions and for rather long evolution times.In order to study and justify the approximations done so far systematically, we decided to use the complete system of the 3D energy and concentration equations as a next step. In all the simulations performed the temperature was found as an almost perfectly linear function of the vertical coordinate. This permits us to eliminate the temperature equation and to reduce the system to two governing equations. Using this system, linear stability analysis shows a slight modification of the values for which one obtains conductive state and monotonic or oscillatory instabilities. However the physics of the problem is not essentially modified. Using nonlinear simulations, like for the simplified model one can obtain through coarsening one single stationary or traveling drop having a soliton-like shape.
薄膜二元混合物的简化模型是以前开发和润滑近似的基础上。表面张力被认为是温度和浓度的函数。增加了浓度的2D简化方程(质量守恒方程)。我们已经通过启发式论证假设温度是垂直坐标上的线性函数,并且对流和扩散项可以忽略。利用这些假设,该模型很好地符合基于纯流体的薄膜方程的理论。空间维度减少了一个,因此计算时间大大减少,允许在三维空间中计算图案的形成和相当长的演化时间。为了系统地研究和证明到目前为止所做的近似,我们决定使用完整的三维能量和浓度方程系统作为下一步。在所有进行的模拟中,发现温度是垂直坐标的几乎完全线性函数。这使我们能够消除温度方程,并将系统简化为两个控制方程。使用这个系统,线性稳定性分析显示了一个轻微的修改值,其中一个获得导电状态和单调或振荡不稳定性。然而,问题的物理性质并没有本质上的改变。使用非线性模拟,类似于简化模型,可以通过粗化具有类似孤子形状的单个静止或行进液滴来获得。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Michael Bestehorn其他文献
Professor Dr. Michael Bestehorn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Michael Bestehorn', 18)}}的其他基金
Phase field modelling in phase transition problems
相变问题中的相场建模
- 批准号:
426085888 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Dynamics of Interfaces Between Drops With Miscible Liquids
液滴与可混溶液体之间界面的动力学
- 批准号:
72947485 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
Rayleigh-Bénard Convection and Faraday Instability in Quasi-Periodic Regimes: Theory and Experiment
准周期状态下的瑞利-贝纳德对流和法拉第不稳定性:理论与实验
- 批准号:
5276144 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Research Grants
Transport and mixing in parametrically excited fluid layers
参数激发流体层中的传输和混合
- 批准号:
403056540 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
飞行器板壳结构红外热波无损检测基础理论和关键技术的研究
- 批准号:60672101
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:面上项目
新型嘧啶并三环化合物的合成研究
- 批准号:20572032
- 批准年份:2005
- 资助金额:25.0 万元
- 项目类别:面上项目
磁层重联区相干结构动力学过程的观测研究
- 批准号:40574067
- 批准年份:2005
- 资助金额:36.0 万元
- 项目类别:面上项目
相似海外基金
Novel antiferromagnetic topological spin structures using thin-film multilayer systems and their functionalities
使用薄膜多层系统的新型反铁磁拓扑自旋结构及其功能
- 批准号:
23K13655 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thin overlays to replace the need for conventional reinforcement in additively manufactured concrete structures
薄覆盖层取代增材制造混凝土结构中传统钢筋的需求
- 批准号:
2883296 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Establishment of a Technology to Create Thin Films and Quantum Structures of Semiconductors Using Marine Bacteria and Elucidation of Their Mechanisms
建立利用海洋细菌制造半导体薄膜和量子结构的技术并阐明其机制
- 批准号:
23K17888 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Examine to enhance the mechanical sustainability of thin-film structures
检查以增强薄膜结构的机械可持续性
- 批准号:
571979-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Idea to Innovation
Design, Fabrication and Characterization of Functional Thin Film Structures
功能薄膜结构的设计、制造和表征
- 批准号:
RGPIN-2019-06023 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Fabrication and Mechanical Properties of Electrodeposited Films with Various Periodic High-Composition Gradient Structures
不同周期高成分梯度结构电沉积薄膜的制备及力学性能
- 批准号:
22K04729 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Investigation of Focal Adhesion Tension During Cardiomyocyte Contraction
心肌细胞收缩过程中局部粘附张力的研究
- 批准号:
10462935 - 财政年份:2022
- 资助金额:
-- - 项目类别:
An Investigation of Focal Adhesion Tension During Cardiomyocyte Contraction
心肌细胞收缩过程中局部粘附张力的研究
- 批准号:
10725111 - 财政年份:2022
- 资助金额:
-- - 项目类别: