不均質な空間の上の確率過程の研究
非齐次空间随机过程研究
基本信息
- 批准号:19K14549
- 负责人:
- 金额:$ 2.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Early-Career Scientists
- 财政年份:2019
- 资助国家:日本
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
「空間の幾何学的性質がその上の確率過程の長時間挙動などの確率的対象にどう影響するか」という問いの解明を目指して研究を行った。パーコレーションクラスター上のランダムウォークのレート関数のパーコレーションのパラメーターに関する連続性は、末尾事象の減衰の速さがパーコレーショ ンのパラメーターについて連続であることを意味するが、筆者はこれをDrewitz-Rath-Sapozhnikovのパーコレーションモデル、Andreasらによる変形に興味を持って考察を進めている。パーコレーションクラスターの上のランダムウォークの訪問点の個数を考察した。いわゆるquenchedなランダム媒質の場合は、その上のランダムウォークの出発点と終点が一致するon-diagonalの場合の熱核評価は対数修正がかかることから、整数格子でいえば2次元と3次元の間にあるような、再帰性の度合いが中間レベルに当たるグラフと類似している面があると考え、そのようなグラフ上の訪問点の個数などの研究との関連を見据えて研究を行っている。また、有限グラフの頂点の個数を大きくするときの極限について、カットオフ現象(もう少し具体的には、ある時刻を境に急に定常測度に近づく現象)が起こるかどうかを、付随する無限グラフのスペクトル次元が2であるようなグラフの場合について、否定的に解決することを目指して考察した。スペクトル次元が2でない場合はDembo-Kumagai-Nakamuraによる結果(2018)がある。そこでは筆者が以前に考察した訪問点の個数よりもむしろ被覆時間に関する研究が密接に関わっていると予想できる。そこで2次元整数格子の場合の先行研究であるDembo-Peres-Rosen-Zeitouniでは、整数格子よりも難しい2次元のリーマン多様体の場合が考察されており、そこでの手法を参考にして考察を進めている。
"the accuracy rate of sexual communication in space learning, the long-term performance assurance rate, the impact on the accuracy rate, the explanation of the problem, and the target refers to the performance of the research bank. I don't know what to do. I don't know. I don't know. Andreas has a good taste in the shape of an investigation. Please tell me that there are many questions about the number of questions. In order to improve the quality of the media, you need to check out the data point of departure, the point of departure, the point of departure, the Please tell me how many questions you have on the computer. Please do some research. The number of real-time data points is large, the number of real-time data points is very high, the number of data points is very high, the number of real-time data points is very large, the number of real-time data points is very large, the number of real-time data points is very high, and the number of real-time data points is very high. The negative explanation refers to the investigation. This is not true. The second dimension matches the results of Dembo-Kumagai-Nakamura statistics (2018). In the past, the number of questions has been inspected by the customer, and the number of questions has been investigated in the past. The number of questions has been discussed in the past. The first step is to study the combination of two-dimensional integer lattice and two-dimensional integer lattice, the first step is to study the combination of two-dimensional integer lattice, two-dimensional Dembo-Peres-Rosen-Zeitouni lattice, two-dimensional integer lattice and two-dimensional integer lattice.
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Some Results for Range of Random Walk on Graph with Spectral Dimension Two
谱维二图上随机游走范围的一些结果
- DOI:10.1007/s10959-020-01013-0
- 发表时间:2020
- 期刊:
- 影响因子:0.8
- 作者:Okamura Kazuki;Okamura Kazuki
- 通讯作者:Okamura Kazuki
Characterizations of the Cauchy distribution associated with integral transforms
与积分变换相关的柯西分布的特征
- DOI:10.1556/012.2020.57.3.1469
- 发表时间:2020
- 期刊:
- 影响因子:0.7
- 作者:Okamura Kazuki
- 通讯作者:Okamura Kazuki
Some results for conjugate equations
- DOI:10.1007/s00010-018-0633-9
- 发表时间:2018-06
- 期刊:
- 影响因子:0.8
- 作者:K. Okamura
- 通讯作者:K. Okamura
Hausdorff Dimensions for Graph-Directed Measures Driven by Infinite Rooted Trees
无限根树驱动的图导向测量的 Hausdorff 维数
- DOI:10.14321/realanalexch.45.1.0029
- 发表时间:2020
- 期刊:
- 影响因子:0.2
- 作者:Okamura Kazuki;Okamura Kazuki;Okamura Kazuki
- 通讯作者:Okamura Kazuki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
岡村 和樹其他文献
Some regularity results for a certain class of de Rham's functional equations
某类de Rham函数方程的一些正则性结果
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
太田竜一;太田泰友;都木宏之;熊谷直人;田辺克明;石田悟己;岩本敏;荒川泰彦;尤 静;商兆琦;商兆琦;商兆琦;商兆琦;商兆琦;商 兆琦;Kazuki Okamura;Hioyuki Takagi;Kazuki Okamura;都木 宏之;都木宏之;Kazuki Okamura;都木宏之;Kazuki Okamura;岡村和樹;都木宏之;岡村和樹;都木宏之;岡村和樹;岡村和樹;岡村 和樹;岡村 和樹;岡村 和樹;Kazuki Okamura;岡村和樹 - 通讯作者:
岡村和樹
Large deviations for simple random walk on percolations with long-range correlations
具有长程相关性的渗滤的简单随机游走的大偏差
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
太田竜一;太田泰友;都木宏之;熊谷直人;田辺克明;石田悟己;岩本敏;荒川泰彦;尤 静;商兆琦;商兆琦;商兆琦;商兆琦;商兆琦;商 兆琦;Kazuki Okamura;Hioyuki Takagi;Kazuki Okamura;都木 宏之;都木宏之;Kazuki Okamura;都木宏之;Kazuki Okamura;岡村和樹;都木宏之;岡村和樹;都木宏之;岡村和樹;岡村和樹;岡村 和樹;岡村 和樹;岡村 和樹;Kazuki Okamura - 通讯作者:
Kazuki Okamura
岡村 和樹的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('岡村 和樹', 18)}}的其他基金
複雑なグラフ上のランダムウォークの性質の研究
研究复杂图上随机游走的特性
- 批准号:
22K13928 - 财政年份:2022
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ランダムグラフ上のランダムウォークの大偏差原理
随机图上随机游走的大偏差原理
- 批准号:
18H05830 - 财政年份:2018
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
グラフとその上のランダムウォークの研究
图及其随机游走的研究
- 批准号:
15H06311 - 财政年份:2015
- 资助金额:
$ 2.66万 - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




