Enhancement of fatigue resistance of strain-hardening cement-based composites by means of experimental-virtual multiscale material design

通过实验虚拟多尺度材料设计增强应变硬化水泥基复合材料的抗疲劳性能

基本信息

项目摘要

A new promising type of fiber-reinforced concrete – highly ductile concrete made by short fibers (Strain-Hardening Cement-based Composite, SHCC) – exhibits high deformation capacity at monotonic tensile loading. Its ductility results from progressive multiple cracking, which is accompanied by distinct strain hardening. To ensure safety and efficiency of building components of SHCC subject to cyclic loads, which are common in practical applications, profound knowledge of the fatigue behavior of this material and theoretical-numerical models are indispensable. The main question with respect to practical applications and to the purposeful improvement of the new fiber-reinforced concrete is: To what extent does the material in the cracked state lose its inherent ductility and tensile strength due to fatigue and how can these losses be mitigated by a goal-oriented material design?The complex behavior of SHCC under cyclic loading has been investigated in the first project phase at micro- and meso-levels. In particular, the degradation mechanisms of polymer microfibers, such as fiber fatigue, defibrillation and fiber squeezing, as well as the fiber-matrix bond properties were comprehensively studied. All microstructural constituents and their behaviors were described using numerical models.In the second phase of the project, experiments on the fatigue behavior of SHCC of different composition shall be performed predominantly on the macroscopic level by applying various loading scenarios and temperature. For a better understanding of the damage processes, the experiments shall be accompanied by detailed morphological investigations. The aim of this project phase is to combine the macroscopic behavior of SHCC under highly cyclic loading including the expected anisotropic material degradation with the damage mechanisms detected and described at the micro- and meso-level. The scale coupling of the numerical models for the meso- and macro-scale requires the development of a thermo-dynamically consistent homogenization for the stress and strain measures, as well as the internal material variables. To achieve a high compu-tational efficiency, time homogenization and adaptive discretization methods at high-performance computers are used.At the end of the project, there will be a comprehensive understanding of the damage mechanisms at different levels of observation, a coherent material characterization methodology, and a digital computational tool to predict and optimize the mechanical behavior of SHCC under cyclic loading. In addition to the SHCC material design, the virtual tool should also enable the targeted development of other types of fiber reinforced concrete for different loading scenarios (digitally enabled material design).
一种新型的有前途的纤维增强混凝土-由短纤维制成的高韧性混凝土(应变硬化水泥基复合材料,SHCC)-在单调拉伸载荷下表现出高变形能力。它的延展性是由渐进的多裂纹引起的,并伴随着明显的应变硬化。为了确保SHCC建筑构件在实际应用中常见的循环荷载作用下的安全性和有效性,必须深入了解这种材料的疲劳行为并建立理论-数值模型。关于实际应用和有目的地改进新型纤维增强混凝土的主要问题是:在何种程度上,材料在开裂状态下会因疲劳而失去其固有的延展性和抗拉强度,以及如何通过目标导向的材料设计来减轻这些损失?在第一个项目阶段,在微观和细观水平上研究了SHCC在循环荷载下的复杂行为。特别是对聚合物微纤维的疲劳、原纤化和挤压等降解机理以及纤维与基体的粘结性能进行了全面的研究。在本项目的第二阶段,将主要在宏观水平上通过施加不同的载荷方案和温度来进行不同成分的SHCC的疲劳行为的实验。为了更好地理解损伤过程,实验应伴随详细的形态学研究。该项目阶段的目的是将SHCC在高循环荷载下的宏观行为(包括预期的各向异性材料退化)与在微观和细观水平上检测和描述的损伤机制相结合。中尺度和宏观尺度的数值模型的尺度耦合需要开发一个热动力学一致的均匀化的应力和应变的措施,以及内部的材料变量。为了实现高计算效率,在高性能计算机上使用时间均匀化和自适应离散化方法。在项目结束时,将全面了解不同观测水平下的损伤机制,连贯的材料表征方法,以及预测和优化SHCC在循环载荷下的力学行为的数字计算工具。除了SHCC材料设计之外,虚拟工具还应该能够针对不同的加载场景(数字化材料设计)有针对性地开发其他类型的纤维增强混凝土。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Michael Kaliske其他文献

Professor Dr.-Ing. Michael Kaliske的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Michael Kaliske', 18)}}的其他基金

Towards Patient-specific Simulations and Treatment Methods in Cardiology: Develop-ment of a Comprehensive Numerical Framework for Left Ventricle Remodelling
心脏病学中针对患者的模拟和治疗方法:左心室重塑综合数值框架的开发
  • 批准号:
    428761409
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Numerical and experimental development of an “Accelerated Repeated Rolling Wheel Load Simulator” (ARROWS)
“加速重复滚轮负载模拟器”(ARROWS)的数值和实验开发
  • 批准号:
    414936990
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Simulation environment for sensor-enhanced tires - SENSE
传感器增强型轮胎的仿真环境 - SENSE
  • 批准号:
    392015269
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Coordination Funds
协调基金
  • 批准号:
    310979960
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Coordination Funds
协调基金
  • 批准号:
    257822578
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Units
Multi-physical and multi-scale theorectical-numerical modeling of the tire-pavement-interaction
轮胎-路面相互作用的多物理和多尺度理论数值建模
  • 批准号:
    257805726
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Units
Thermo-hyrgo-mechanical processes for the densification and forming of wood: Continuum-mechanical material formulation and structural simulations
用于木材致密化和成型的热湿机械工艺:连续机械材料配方和结构模拟
  • 批准号:
    233962626
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Numerische Simulation und energetische Charakterisierung von Betonstrukturen unter Impakt mit diskreter Rissbildung
离散裂纹冲击下混凝土结构的数值模拟和能量表征
  • 批准号:
    219751561
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Thermo-mechanische Haltbarkeitsanalyse zur Designverbesserung elastomerer Bauteile in der industriellen Forschung und Entwicklung
用于工业研发中弹性部件设计改进的热机械耐久性分析
  • 批准号:
    209647436
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)
Computational Electromechanics of the Heart: Development of FE-Based Predictive Simulation Tools for Patient Specific Analysis
心脏的计算机电学:开发基于有限元的预测模拟工具,用于患者特定分析
  • 批准号:
    217579293
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Mechanistic Study of Inspiratory Training in Childhood Asthma
儿童哮喘吸气训练机制研究
  • 批准号:
    10637048
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Fatigue and Fatigability in Veterans Following SARS-CoV-2 Infection
退伍军人感染 SARS-CoV-2 后的疲劳和容易疲劳
  • 批准号:
    10703633
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Identifying mechanisms underlying sex differences in motoneuron discharge
识别运动神经元放电性别差异的机制
  • 批准号:
    10751793
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A Potent D-peptide Inhibitor of TNFα for Treatment of Rheumatoid Arthritis
一种有效的 TNFα D 肽抑制剂,用于治疗类风湿性关节炎
  • 批准号:
    10822182
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Countering sympathetic vasoconstriction during skeletal muscle exercise as an adjuvant therapy for DMD
骨骼肌运动期间对抗交感血管收缩作为 DMD 的辅助治疗
  • 批准号:
    10735090
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of a Piezoelectric Intramedullary Nail for Enhanced Fracture Healing
开发用于增强骨折愈合的压电髓内钉
  • 批准号:
    10759862
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of Antisense Oligonucleotides to Regulate Gamma' Fibrinogen Levels
开发反义寡核苷酸来调节γ纤维蛋白原水平
  • 批准号:
    10759950
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
  • 批准号:
    10698965
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Ultrafast sintering of dental zirconia: composition-processing-property relationships with high-throughput fail-fast screening
牙科氧化锆的超快烧结:成分-加工-性能关系与高通量快速失败筛选
  • 批准号:
    10792738
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Novel biomarkers and pathways of persistent endometriosis-associated pain across the life course
整个生命过程中持续性子宫内膜异位症相关疼痛的新生物标志物和途径
  • 批准号:
    10611090
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了