Efficient Numerical Methods for Large Partial Differential Complementarity Systems arising in Multispecies Reactive Transport with Minerals in Porous Media
多孔介质中矿物多物种反应输运中产生的大偏微分互补系统的有效数值方法
基本信息
- 批准号:38252869
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2007
- 资助国家:德国
- 起止时间:2006-12-31 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project focuses on the accurate and efficient numerical treatment of time-dependent reactive transport problems with many species (in porous media) in 2 or 3 space dimensions with local complementarity conditions as essential ingredient. The problem takes the form of a differential algebraic set of equations and complementarity constraints, consisting of time dependent (possibly convection-dominated) semilinear partial differential equations (PDEs), nonlinear ordinary differential equations, nonlinear algebraic equalities, and inequalities. Taking a typical species number of 10 to 20 and of nodal degrees of freedom of 104 to 106, also for an appropriate (e.g., local mass conservative) discretization, the solution of the emerging finite dimensional complementarity system is a formidable task, whose efficient algorithmic treatment is the main topic of the project. Algorithms of semismooth Newton type are the principal choice. Aims are the investigation and improvement of the algorithms w.r.t. efficiency and robustness, and comparing them to other (e.g., interiorpoint-) methods. The algorithms to be developed are supposed to heavily take advantage of knowledge about the substructuring of the problem. The emerging methods and software, also for parallel computers, is supposed to handle several large real world problems, not yet treatable satisfactorily.
该项目的重点是在2或3个空间维度与当地互补条件为基本成分的时间依赖性反应输运问题(多孔介质中)的准确和有效的数值处理。该问题的形式是微分代数方程组和互补约束,包括时间依赖(可能是对流占优)的半线性偏微分方程(PDE),非线性常微分方程,非线性代数等式和不等式。取10至20的典型物种数和104至106的节点自由度,也对于适当的(例如,局部质量守恒)离散化,新兴的有限维互补系统的解决方案是一项艰巨的任务,其有效的算法处理是该项目的主要课题。半光滑牛顿型算法是主要的选择。目的是研究和改进w.r.t.效率和鲁棒性,并将它们与其他(例如,方法。要开发的算法应该大量利用知识的子结构的问题。新兴的方法和软件,也是为并行计算机,应该处理几个大的真实的世界的问题,还不能令人满意地处理。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model
多孔介质中两相二组分流的全耦合广义混合混合有限元近似第一部分:数学模型的公式和性质
- DOI:10.1007/s10596-013-9341-7
- 发表时间:2013
- 期刊:
- 影响因子:2.5
- 作者:Estelle Marchand;Torsten Müller;Peter Knabner
- 通讯作者:Peter Knabner
A general reduction scheme for reactive transport in porous media
- DOI:10.1007/s10596-012-9304-4
- 发表时间:2012-07
- 期刊:
- 影响因子:2.5
- 作者:J. Hoffmann;S. Kräutle;P. Knabner
- 通讯作者:J. Hoffmann;S. Kräutle;P. Knabner
Fully coupled generalised hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part II: numerical scheme and numerical results
多孔介质中两相二组分流的全耦合广义混合混合有限元近似第二部分:数值方案和数值结果
- DOI:10.1007/s10596-012-9279-1
- 发表时间:2012
- 期刊:
- 影响因子:2.5
- 作者:Estelle Marchand;Torsten M¨ ller;Peter Knabner
- 通讯作者:Peter Knabner
The semismooth Newton method for multicomponent reactive transport with minerals
矿物多组分反应输运的半光滑牛顿法
- DOI:10.1016/j.advwatres.2010.10.004
- 发表时间:2011
- 期刊:
- 影响因子:4.7
- 作者:Serge Kräutle
- 通讯作者:Serge Kräutle
The semismooth Newton method for the solution of reactive transport problems including mineral precipitation-dissolution reactions
用于解决包括矿物沉淀-溶解反应在内的反应输运问题的半光滑牛顿法
- DOI:10.1007/s10589-010-9379-6
- 发表时间:2011
- 期刊:
- 影响因子:2.2
- 作者:Hannes Buchholzer;Christian Kanzow;Peter Knabner;Serge Kräutle
- 通讯作者:Serge Kräutle
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Christian Kanzow其他文献
Professor Dr. Christian Kanzow的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Christian Kanzow', 18)}}的其他基金
Verallgemeinerte Nash-Gleichgewichte via Optimierung unter Gleichgewichtsrestriktionen
通过均衡约束下的优化实现广义纳什均衡
- 批准号:
198792285 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Optimierung und verallgemeinerte Nash-Gleichgewichte
优化和广义纳什均衡
- 批准号:
146044182 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Glättungsverfahren zur Lösung von semi-definiten Optimierungsproblemen
求解半定优化问题的平滑方法
- 批准号:
5356794 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Research Grants
Optimization Problems in Banach Spaces with Non-smooth Structure
非光滑结构Banach空间的优化问题
- 批准号:
314067226 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似海外基金
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
- 批准号:
2309687 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Efficient numerical methods for wave-action transport and scattering
波作用输运和散射的高效数值方法
- 批准号:
EP/W007436/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPAS-2020-00102 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Accelerator Supplements
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPIN-2020-06278 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Accurate and Efficient Computational Methods for the Numerical Solution of High-Dimensional Partial Differential Equations in Computational Finance
计算金融中高维偏微分方程数值解的准确高效计算方法
- 批准号:
569181-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPIN-2020-06278 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
- 批准号:
RGPAS-2020-00102 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Accelerator Supplements
Robust and Efficient Numerical Methods for Matrix Problems with Singularity
奇异性矩阵问题的鲁棒高效数值方法
- 批准号:
20K14356 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Robust and Efficient Numerical Methods for Electromagnetic Wave Propagation in Complex Media
复杂介质中电磁波传播的鲁棒高效数值方法
- 批准号:
2011943 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Efficient, Accurate, and Structure-Preserving Numerical Methods for Phase Fields-Type Models with Applications
合作研究:高效、准确、结构保持的相场型模型数值方法及其应用
- 批准号:
2012269 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant