Non-Gaussianity, bounds on turbulent scaling parameter and conformal transformations - analyzing the Lundgrenand Hopf functional equation of turbulence using Lie symmetries
非高斯性、湍流标度参数和共形变换的界限 - 使用李对称性分析湍流的 Lundgrenand Hopf 函数方程
基本信息
- 批准号:385665358
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Symmetries lie at the heart of all physical theories such as classical and quantum mechanics or relativity as they mirror axiomatic properties of the underlying physics. Some key properties of turbulence, especially non-gaussianity and intermittency, were recently given a symmetry-based measure by the present applicant. It was shown that this is consistent with all three complete theories of statistical turbulence, i.e. the multi-point correlation equations, the Lundgren-Novikov-Monin (LMN) probability density (PDF) hierarchy and the Hopf functional approach. Most important, in a sequence of publications the applicant has shown that symmetries are the axiomatic basis for all turbulent scaling laws. Based on the LMN hierarchy and the Hopf functional we intend to extend our recent results and focus on the following key questions: (i) presence of the conformal symmetry in 2D turbulence, (ii) bounds on turbulent scaling law parameters, (iii) non-gaussianity of velocity increment statistics, (iv) anomalous scaling of structure functions of arbitrary moments. As both LMN and Hopf approach are non-standard type of equations, we will first derive the exhaustive list of symmetries using extended symmetry methods based on Lie-Baecklund transformations. For subtask (i) we search for the conformal group in the LMN hierarchy for vorticity in 2D turbulence, as its presence was recently confirmed analysing numerical data. Preliminary calculations by the applicant supports this important physical and decade old conjecture. For subtask (ii) we will untangle the constraints on the group parameter and free functions in the symmetries by investigating the underlying algebraic structure. The aforementioned manifests e.g. in kappa of the logarithmic law of the wall, which is the ratio of a statistical and a scaling group parameter, the determination of its numerical value is yet unknown. We may further use the positivity of PDF, which will impose additional constraints on symmetry parameters. For subtask (iii) having both symmetries and its constraints at our hands we may construct group invariant solutions for the PDF. For this it is already visible that a certain combination of symmetries will lead to exponential tails and non-gaussianity, the former being closely related to intermittency. Finally, for subtask (iv), we will construct group invariant solutions of the Hopf functional, which delivers the infinite sequence of moments, and, in turn, all structure functions, to be investigated for its anomalous scaling properties. For both (iii) and (iv) the expected results may only be observed for a very specific combination of symmetries. This specificity will also be investigated using Lie algebra, while the working hypothesis is, that these symmetries form a specific sub-algebra. With the present proposal, the long-term goal is to put some of the most pressing questions in turbulence on grounds, which is beyond data matching and semi-empirical modelling.
对称性是所有物理理论的核心,如经典力学、量子力学或相对论,因为它们反映了基础物理学的公理性质。湍流的一些关键性质,特别是非高斯性和非高斯性,最近由本申请人给出了基于高斯性的测量。结果表明,这是一致的,所有三个完整的统计湍流理论,即多点相关方程,Lundel-Novikov-Monin(LMN)的概率密度(PDF)的层次和霍普夫函数的方法。最重要的是,在一系列出版物中,申请人已经表明对称性是所有湍流标度律的公理基础。基于LMN族和Hopf泛函,我们打算推广我们最近的结果,并集中讨论以下关键问题:(i)二维湍流中共形对称的存在性,(ii)湍流标度律参数的界,(iii)速度增量统计的非高斯性,(iv)任意矩结构函数的反常标度性.由于LMN和Hopf方法都是非标准类型的方程,我们将首先使用基于Lie-Baecklund变换的扩展对称性方法导出对称性的穷举列表。对于子任务(i),我们在二维湍流涡度的LMN层次结构中寻找共形群,因为它的存在最近被分析数值数据所证实。申请人的初步计算支持这一重要的物理和十年前的猜想。对于子任务(ii),我们将解开的限制群参数和自由函数的对称性,通过调查潜在的代数结构。上述表现例如在kappa的对数定律的壁,这是一个统计和比例组参数的比率,其数值的确定是未知的。我们可以进一步使用PDF的正性,这将对对称参数施加额外的约束。对于子任务(iii),在我们手中的对称性和它的约束,我们可以构建PDF的群不变的解决方案。对于这一点,我们已经看到,某种对称性的组合将导致指数尾和非高斯性,前者与非高斯性密切相关。最后,对于子任务(iv),我们将构造Hopf泛函的群不变解,它提供了无穷序列的时刻,反过来,所有的结构函数,以研究其异常标度性质。对于(iii)和(iv),预期的结果只能在非常特定的对称性组合下观察到。这种特殊性也将使用李代数进行研究,而工作假设是,这些对称性形成一个特定的子代数。根据目前的提议,长期目标是将湍流中一些最紧迫的问题放在合理的位置,这超出了数据匹配和半经验建模的范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Martin Oberlack其他文献
Professor Dr.-Ing. Martin Oberlack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Martin Oberlack', 18)}}的其他基金
Shock-like focusing of inertial waves - the localized generation of turbulence
惯性波的冲击式聚焦——湍流的局部产生
- 批准号:
407316090 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Experimental, numerical and analytical investigation of droplet oscillation of a viscoelastic fluid
粘弹性流体液滴振荡的实验、数值和分析研究
- 批准号:
330615302 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Direct numerical simulation of the droplet evaporation and combustion using a discontinuous Galerkin scheme
使用不连续伽辽金方案直接数值模拟液滴蒸发和燃烧
- 批准号:
352548003 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Asymptotic Suction Boundary Layer: Alternative Linear and Weakly Non-Modal Stability Modes - a New Route to Large-Scale Turbulent Structures
渐进吸力边界层:替代线性和弱非模态稳定模式 - 大规模湍流结构的新途径
- 批准号:
316376675 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Symmetry based scaling of the multi-point statistics of a turbulent Couette flow extended by wall-transpiration
由壁蒸腾扩展的湍流库埃特流的多点统计的基于对称的缩放
- 批准号:
267513790 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Helical invariant flows: New conservation laws and their importance for 2 1/2D turbulence
螺旋不变流:新守恒定律及其对 2 1/2D 湍流的重要性
- 批准号:
270556741 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Simulation of the droplet evaporation and combustion and droplet impact on a solid surface using a discontinuous Galerkin scheme
使用不连续伽辽金方案模拟液滴蒸发和燃烧以及液滴对固体表面的影响
- 批准号:
212746421 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Discontinuous Galerkin methods for two-phase flows with soluble surfactants
用于可溶性表面活性剂两相流的不连续伽辽金方法
- 批准号:
166796982 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Priority Programmes
Theoretische, numerische und experimentelle Untersuchungen tropfenförmiger Fluidschichten auf elektrisch hochbelasteten Isolierstoffoberflächen
高电负载绝缘材料表面滴状流体层的理论、数值和实验研究
- 批准号:
138260376 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Geometrische Struktur kleinskaliger Turbulenz
小尺度湍流的几何结构
- 批准号:
46938306 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
A Needle in a Haystack - Characterizing Primordial Non-Gaussianity to Probe the Early Universe
大海捞针——表征原初非高斯性以探测早期宇宙
- 批准号:
569089-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Non-Gaussianity in Large Scale Structure and the Early Universe
大尺度结构和早期宇宙中的非高斯性
- 批准号:
2603224 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Understanding the origin of the stochastic gravitational wave background with non-Gaussianity
理解非高斯随机引力波背景的起源
- 批准号:
20J40022 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Testing Gaussianity of primordial gravitational waves toward understanding the inflationary Universe
测试原始引力波的高斯性以了解暴胀宇宙
- 批准号:
17H07319 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Cosmology with the galaxy bispectrum: galaxy bias, redshift-space distortion, and primordial non-Gaussianity
星系双谱的宇宙学:星系偏差、红移空间畸变和原初非高斯性
- 批准号:
1517363 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Probing primordial non-Gaussianity with Hyper Supreme-Cam survey and SDSS-III
使用 Hyper Supreme-Cam 调查和 SDSS-III 探测原始非高斯性
- 批准号:
22740149 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Probability Distribution Functions of Field Variations, Non-Gaussianity and Intermittency in the Turbulent Solar Wind
湍流太阳风场变化、非高斯性和间歇性的概率分布函数
- 批准号:
0940976 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
Observational Probes of Non-Gaussianity in the Primordial Fluctuations
原初涨落中非高斯性的观测探索
- 批准号:
22340056 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Weak lensing probes of primordial non-Gaussianity and mass estimators of weak-lensing clusters
原初非高斯性的弱透镜探针和弱透镜团的质量估计器
- 批准号:
170603556 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grants
Study of non-Gaussianity of primordial density perturbations and theoretical models in the early universe
早期宇宙原初密度扰动非高斯性及理论模型研究
- 批准号:
21740192 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)