Discontinuous Galerkin methods for two-phase flows with soluble surfactants
用于可溶性表面活性剂两相流的不连续伽辽金方法
基本信息
- 批准号:166796982
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2010
- 资助国家:德国
- 起止时间:2009-12-31 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The general research objective is to develop and implement a high-accurate numerical solver for the computation of multiphase flows including phase interfaces and interfacial transport equations with the Discontinuous Galerkin (DG) method. Specifically, it is intended to extend the newly developed DG library BoSSS (Bounded Support Spectral Solver) for single phase flows by an interface tracking method combined with the cut-cell method and non-smooth basis functions. The cut-cell method is proposed to accurately compute surface and volume integrals for those cells which are split by the phase interface. Further the non-smooth basis functions such as the Heaviside function allow for a sharp delimitation between different fluid properties. In this connection the interface tracking method is based on level-set and volume-of-fluid, or most likely a combination of both, to ensure both local mass preservation and a highly accurate front position. Finally, the interfacial equation is intended to be solved in an analogous fashion to the level-set formulation where the interface, a two-dimensional manifold, is embedded and solved in a manifold of dimension three. Similar to the signed-distance function for the level-set method certain embedding conditions are to be developed to couple the interfacial transport equations, which live on a two-dimensional manifold, into a three-dimensional manifold. The key goal is that the combination of the latter methods may avoid serious shortcomings of classical schemes such as mass deficit at the interface or artificially induced flows due to numerical errors in the computation of surface curvature to name only a few.
一般研究的目标是开发和实施一个使用不连续的Galerkin(DG)方法的多相流量计算的高精确数值求解器。具体而言,它旨在通过接口跟踪方法与Cut-Cell方法和非平滑基础基础函数相结合,以扩展新开发的DG库Boss(有界支持光谱求解器)对单相流进行。提出了切割方法,以准确计算那些被相界面分裂的单元格的表面和体积积分。进一步的非平滑基函数,例如重质函数,可以在不同的流体特性之间进行急剧的划界。在这方面,接口跟踪方法基于级别和流体量,或者最有可能是两者的组合,以确保局部质量保存和高度准确的前部位置。最后,界面方程旨在以类似的方式求解级别公式,在这种情况下,界面(二维歧管)嵌入并溶解在维度三的歧管中。与级别方法的签名距离函数相似,要开发某些嵌入条件,以将生存在二维歧管上的界面传输方程与三维歧管。关键目的是,后一种方法的组合可以避免经典方案的严重缺点,例如界面处的质量不足或由于表面曲率计算中的数值错误而导致的人为诱发的流量,仅举几例。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Martin Oberlack其他文献
Professor Dr.-Ing. Martin Oberlack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Martin Oberlack', 18)}}的其他基金
Shock-like focusing of inertial waves - the localized generation of turbulence
惯性波的冲击式聚焦——湍流的局部产生
- 批准号:
407316090 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Experimental, numerical and analytical investigation of droplet oscillation of a viscoelastic fluid
粘弹性流体液滴振荡的实验、数值和分析研究
- 批准号:
330615302 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Non-Gaussianity, bounds on turbulent scaling parameter and conformal transformations - analyzing the Lundgrenand Hopf functional equation of turbulence using Lie symmetries
非高斯性、湍流标度参数和共形变换的界限 - 使用李对称性分析湍流的 Lundgrenand Hopf 函数方程
- 批准号:
385665358 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Direct numerical simulation of the droplet evaporation and combustion using a discontinuous Galerkin scheme
使用不连续伽辽金方案直接数值模拟液滴蒸发和燃烧
- 批准号:
352548003 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Asymptotic Suction Boundary Layer: Alternative Linear and Weakly Non-Modal Stability Modes - a New Route to Large-Scale Turbulent Structures
渐进吸力边界层:替代线性和弱非模态稳定模式 - 大规模湍流结构的新途径
- 批准号:
316376675 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Symmetry based scaling of the multi-point statistics of a turbulent Couette flow extended by wall-transpiration
由壁蒸腾扩展的湍流库埃特流的多点统计的基于对称的缩放
- 批准号:
267513790 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Helical invariant flows: New conservation laws and their importance for 2 1/2D turbulence
螺旋不变流:新守恒定律及其对 2 1/2D 湍流的重要性
- 批准号:
270556741 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Simulation of the droplet evaporation and combustion and droplet impact on a solid surface using a discontinuous Galerkin scheme
使用不连续伽辽金方案模拟液滴蒸发和燃烧以及液滴对固体表面的影响
- 批准号:
212746421 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Theoretische, numerische und experimentelle Untersuchungen tropfenförmiger Fluidschichten auf elektrisch hochbelasteten Isolierstoffoberflächen
高电负载绝缘材料表面滴状流体层的理论、数值和实验研究
- 批准号:
138260376 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Geometrische Struktur kleinskaliger Turbulenz
小尺度湍流的几何结构
- 批准号:
46938306 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
间断Galerkin有限元方法及其自适应并行计算
- 批准号:12302375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有退化或间断通量的双曲方程的间断Galerkin方法误差估计
- 批准号:12301513
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
奇异摄动积分方程和积分微分方程的hp型Galerkin方法
- 批准号:12301468
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
若干变系数问题的高效谱Galerkin方法研究
- 批准号:12371368
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
二维非线性薛定谔型方程自适应非结构网格局部间断Petrov-Galerkin方法研究
- 批准号:12361076
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
- 批准号:
2309591 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
- 批准号:
2404521 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
- 批准号:
2309670 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持间断伽辽金方法
- 批准号:
2309590 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Systems with Compact Stencils
用于具有紧凑模板的对流主导系统的龙格-库塔不连续伽辽金方法
- 批准号:
2208391 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant