Shock-like focusing of inertial waves - the localized generation of turbulence

惯性波的冲击式聚焦——湍流的局部产生

基本信息

项目摘要

This project aims at developing a theory on the evolution of an initially axisymmetric rotating flow containing conical inertial waves that emerge from a vibrating torus and meet in a focal point. The understanding of this archetypal flow raises several questions pertaining to its topology and dynamics. We will address these questions by combining symmetry group theory and numerical simulations, progressing from the simpler linear model to the more complex turbulent one. First, the symmetry properties of the flow will be exhaustively understood for low forcing amplitudes for which linear wave propagation occurs. Then, this will permit to tackle the weakly nonlinear regime at increasing wave amplitude, where a local shock-like phenomenon occurs at the focal point of the inertial waves. This triggers complex energy transfers between waves but also a yet to be explained transfer to large-scale motion. The analytic basis will be an equation derived from the Euler equation using singular asymptotics in the limit of high rotation rates and valid for large wave amplitudes. The structural symmetry breaking will be explained by a combination of stability theory and group theory, which we plan to relate to dynamical arguments drawn from a statistical analysis of triadic interactions of inertial waves. In addition to this system approach, we will study local phenomena, such as the mechanism limiting the core of non-linearity to a localized region in the flow. After the comprehensive study of the wave-turbulence regime, we will consider the fully turbulent regime in which nonlinearities are strong so that transfers in the flow are mediated by both inertial waves exchanges and by classical turbulent ones, thus producing more complex couplings. Our original approach will be to perform the symmetry analysis of two-point statistical equations, and to relate this to the isotropy-breaking in Direct Numerical Simulations with and without helicity. In the helical case, additional invariants have to be considered. The role of the specific geometry will also be evaluated by a parametric investigation of the cone-shaped inertial waves with and without confinement, also by Direct Numerical Simulations. The most original aspect of our project is thus to integrate in a single study a new theory based on the symmetries of rotating turbulent flows, and a dynamical point of view for anisotropic transfers between scales.
该项目旨在发展一种关于最初轴对称旋转流的演化理论,该旋转流包含从振动环面出现并在焦点处相遇的锥形惯性波。对这种原型流的理解提出了几个与其拓扑结构和动力学有关的问题。我们将结合对称群理论和数值模拟来解决这些问题,从简单的线性模型发展到更复杂的湍流模型。首先,对于线性波传播发生时的低强迫振幅,将彻底理解流动的对称性。然后,这将允许在增加的波幅下处理弱非线性状态,其中在惯性波的焦点处发生局部冲击状现象。这引发了波之间复杂的能量转移,但也引发了尚未解释的大规模运动转移。分析基础将是从欧拉方程导出的方程,该方程在高旋转速率的极限下使用奇异渐近性,并且对大波幅有效。结构对称性破缺将由稳定性理论和群论的结合来解释,我们计划将其与来自惯性波三元相互作用的统计分析的动力学参数相关联。除了这个系统的方法,我们将研究本地的现象,如机制限制的核心非线性流动中的局部区域。在对波动-湍流状态进行全面研究之后,我们将考虑完全湍流状态,在该状态下,非线性很强,因此流中的传输由惯性波交换和经典湍流交换介导,从而产生更复杂的耦合。我们最初的方法是进行两点统计方程的对称性分析,并将其与有螺旋性和无螺旋性的直接数值模拟中的各向同性破缺联系起来。在螺旋的情况下,必须考虑额外的不变量。具体的几何形状的作用也将进行评估的锥形惯性波的参数调查,并没有限制,也通过直接数值模拟。因此,我们的项目的最原始的方面是在一个单一的研究中整合一个新的理论的基础上旋转湍流的对称性,和尺度之间的各向异性传输的动力学观点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Martin Oberlack其他文献

Professor Dr.-Ing. Martin Oberlack的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Martin Oberlack', 18)}}的其他基金

Experimental, numerical and analytical investigation of droplet oscillation of a viscoelastic fluid
粘弹性流体液滴振荡的实验、数值和分析研究
  • 批准号:
    330615302
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Non-Gaussianity, bounds on turbulent scaling parameter and conformal transformations - analyzing the Lundgrenand Hopf functional equation of turbulence using Lie symmetries
非高斯性、湍流标度参数和共形变换的界限 - 使用李对称性分析湍流的 Lundgrenand Hopf 函数方程
  • 批准号:
    385665358
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Direct numerical simulation of the droplet evaporation and combustion using a discontinuous Galerkin scheme
使用不连续伽辽金方案直接数值模拟液滴蒸发和燃烧
  • 批准号:
    352548003
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Asymptotic Suction Boundary Layer: Alternative Linear and Weakly Non-Modal Stability Modes - a New Route to Large-Scale Turbulent Structures
渐进吸力边界层:替代线性和弱非模态稳定模式 - 大规模湍流结构的新途径
  • 批准号:
    316376675
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Symmetry based scaling of the multi-point statistics of a turbulent Couette flow extended by wall-transpiration
由壁蒸腾扩展的湍流库埃特流的多点统计的基于对称的缩放
  • 批准号:
    267513790
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Helical invariant flows: New conservation laws and their importance for 2 1/2D turbulence
螺旋不变流:新守恒定律及其对 2 1/2D 湍流的重要性
  • 批准号:
    270556741
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Simulation of the droplet evaporation and combustion and droplet impact on a solid surface using a discontinuous Galerkin scheme
使用不连续伽辽金方案模拟液滴蒸发和燃烧以及液滴对固体表面的影响
  • 批准号:
    212746421
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Discontinuous Galerkin methods for two-phase flows with soluble surfactants
用于可溶性表面活性剂两相流的不连续伽辽金方法
  • 批准号:
    166796982
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Theoretische, numerische und experimentelle Untersuchungen tropfenförmiger Fluidschichten auf elektrisch hochbelasteten Isolierstoffoberflächen
高电负载绝缘材料表面滴状流体层的理论、数值和实验研究
  • 批准号:
    138260376
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Geometrische Struktur kleinskaliger Turbulenz
小尺度湍流的几何结构
  • 批准号:
    46938306
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

桂花类胡萝卜素代谢相关新基因OfMYB-like的功能与机制解析
  • 批准号:
    JCZRYB202501133
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
HmWER-like调控花青素影响绣球‘无尽夏’蓝色萼片形成的机制研究
  • 批准号:
    2025JJ50137
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
OsbZIP60-like作为锌感受器调控香稻香味的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
MMRN1 通过 EGF-like 结构域参与白血病干细胞干性维持的作用机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
社区人群肠道定植肺炎克雷伯菌blaKPC-like 基因介导头孢他啶-阿维巴坦耐药分布及相关 机制研究
  • 批准号:
    Q24H260012
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
SaCBL1-like–SaCIPK3-1分子模块提高马铃薯耐寒能力的功能和机理研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    30.0 万元
  • 项目类别:
    省市级项目
NP63调控Basal-like亚型胰腺导管腺癌特异性增强子通过LAPT5/WWP2/MMC-I轴介导免疫逃逸的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0 万元
  • 项目类别:
    面上项目
E3泛素连接酶MaXB3-like在乙烯诱导香蕉果实耐冷性中的机制分析
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
转录因子GhbHLH149-like在陆地棉苗期盐胁迫响应中的蛋白质组 学解析和功能验证
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
SHP2调控Treg向Th2-like Treg的可塑性转化在变应性鼻炎中的作用与机制研究
  • 批准号:
    82301281
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Research on safety and efficacy evaluation focusing on estrogen-like action of health food materials and components
以保健食品原料及成分雌激素样作用为重点的安全性和功效评价研究
  • 批准号:
    23K10974
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Possibility of a novel depressive-like behavior evaluation system that evaluates "motivation" focusing on nest-building behavior in mice
一种新型抑郁样行为评估系统的可能性,该系统可评估小鼠筑巢行为的“动机”
  • 批准号:
    23K14802
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Targeting vulnerable Dengue epitopes: Characterization of broadly neutralizing antibodies and engineering novel epitope-focusing immunogens
针对脆弱的登革热表位:广泛中和抗体的表征和工程新型表位聚焦免疫原
  • 批准号:
    9758214
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Regulation of rheumatoid synovial fibroblasts focusing on layilin-dependent epithelial-mesenchymal transition-like changes
类风湿滑膜成纤维细胞的调控重点关注莱伊林依赖性上皮间质转化样变化
  • 批准号:
    19K08896
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of the mechanism underlying the antidepressant-like effects of Kampo medicines focusing on the monoamine nervous system and epigenetics
以单胺神经系统和表观遗传学为重点分析汉方药物抗抑郁样作用的机制
  • 批准号:
    18K14941
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study on epidemiological meta-analysis of diabetic nephropathy focusing on complex systems of periodontal disease and intestinal immune disturbance
关注牙周病与肠道免疫紊乱复杂系统的糖尿病肾病流行病学荟萃分析研究
  • 批准号:
    18H03015
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An investigation of the pathogenic mechanism of IgG4-related disease focusing on the scavenger receptor "MARCO"
以清道夫受体“MARCO”为中心研究IgG4相关疾病的发病机制
  • 批准号:
    17K17265
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on breast cancer suppressive effect focusing on edible plant derived exosome-like nanoparticles.
以可食用植物源性外泌体样纳米粒子为重点的乳腺癌抑制作用研究。
  • 批准号:
    17K17961
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of resistance exercise program focusing on fat browning myokines
开发针对脂肪褐变肌因子的抗阻运动计划
  • 批准号:
    16K01724
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regulation of rheumatoid synovial fibroblasts focusing on layilin-dependent epithelial-mesenchymal transition-like changes
类风湿滑膜成纤维细胞的调控重点关注莱伊林依赖性上皮间质转化样变化
  • 批准号:
    16K09910
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了