Symmetry based scaling of the multi-point statistics of a turbulent Couette flow extended by wall-transpiration
由壁蒸腾扩展的湍流库埃特流的多点统计的基于对称的缩放
基本信息
- 批准号:267513790
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2015
- 资助国家:德国
- 起止时间:2014-12-31 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ultimate goal of the present proposal is to deepen our knowledge on turbulent shear flows based on Lie symmetries, and to extend our knowledge of the multi-point correlation equations (MPCE) to the companion more fundamental probability density function (PDF) Ludgren-Monin-Novikov equations.Our understanding of the fact that certain symmetries of canonical shear flow are active or broken has to be completely revised as physical mechanisms such as wall transpiration appears to break certain symmetries for the mean velocity, however, at the same time gives rise to new symmetries for higher order correlations.The present proposal aims in closing this gap by revising parts of the symmetry based turbulence theory by analysing the turbulent Couette flow with and without transpiration supplemented by related large Reynolds number DNS particularly focussing on the PDF approach. The latter flow is ideal in the sense that certain symmetries may be freely switched on and off.For this we need to comprehend that turbulent scaling laws are Lie symmetry group based solutions. Based on this theory the present applicant generated various scaling laws for the mean velocity of plane shear flows (2000,2001), all of which, except the plane Couette case, have since then been undoubtedly validated.A substantial progress was gained in 2010 where the present applicant derived an extended set of Lie symmetries of the MPCE. This significantly revised our understanding of turbulence statistics and, most important, also delivered the missing link to compute higher correlations, which was nicely validated including the classical near-wall log-region.In the precursor proposal even a new logarithmic centre region scaling law was forecasted for a turbulent Poiseuille flow with constant wall transpiration and convincingly validated including all related stresses against large scale DNS data.Still, various issues of the theory are unresolved: (i) recent large-scale DNS for the turbulent Couette flow nicely validated additional new statistical symmetries though for the mean velocity the latter only appear active for the Couette flow the reason being unknown. (ii) the higher correlations selectively rely on these new statistical symmetries, e.g. for fully parallel shear flows this symmetry is only switched on for the 11-component while for non-parallel flows, i.e due to wall transpiration, these symmetry is pivotal for all second moments.Finally, and most important, all symmetries have their counterparts both in the MPCE and in the more central PDF equations. Symmetry-invariant solutions for the PDF have to obey the non-negativity restriction of PDFs, which poses a significant constraint onto the solution and hence on the values of the group parameters. In turn, this inflicts constraints onto the scaling law parameter such as log-law parameter $\kappa$ with the eventual goal to obtain first principle constraints for them.
本提案的最终目标是加深我们对基于Lie对称性的湍流剪切流的认识,并将我们对多点相关方程(MPCE)的了解扩展到更基本的概率密度函数(PDF)Ludding-Monin-诺维科夫方程。我们对正则剪切流的某些对称性是活跃的或被破坏的这一事实的理解必须被完全修正,因为物理机制,由于壁面蒸发似乎打破了平均速度的某些对称性,然而,同时又产生了高阶相关性的新对称性,本建议旨在通过分析有和无蒸发的湍流Couette流,特别是通过PDF方法补充,来修正基于对称性的湍流理论的部分,从而缩小这一差距。后一种流动是理想的,因为某些对称性可以自由地打开和关闭。为此,我们需要理解湍流标度律是基于Lie对称群的解。基于这一理论,本申请人推导出了平面剪切流平均速度的各种标度律(2000、2001),除平面Couette情况外,所有这些律此后都得到了毫无疑问的验证。2010年取得了实质性进展,本申请人推导出了MPCE的Lie对称性的扩展集。这显著地修正了我们对湍流统计的理解,最重要的是,还提供了计算更高相关性的缺失环节,包括经典的近壁对数区域,这一点得到了很好的验证。在前体提案中,甚至对具有恒定壁蒸发的湍流Poiffille流预测了一个新的对数中心区域标度律,并令人信服地验证了包括大尺度DNS数据的所有相关应力。该理论的各种问题尚未解决:(i)最近对湍流库埃特流的大规模DNS很好地验证了附加的新的统计对称性,尽管对于平均速度,后者只对库埃特流有效,原因尚不清楚。(ii)更高的相关性选择性地依赖于这些新的统计对称性,例如,对于完全平行的剪切流,这种对称性仅在11分量时开启,而对于非平行流,即由于壁蒸发,这些对称性对于所有二阶矩都是关键的。 PDF的对称不变解必须服从PDF的非负性限制,这对解以及群参数的值构成了重要的约束。反过来,这会对标度律参数(如对数律参数$\kappa$)施加约束,最终目标是获得它们的第一原理约束。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Martin Oberlack其他文献
Professor Dr.-Ing. Martin Oberlack的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Martin Oberlack', 18)}}的其他基金
Shock-like focusing of inertial waves - the localized generation of turbulence
惯性波的冲击式聚焦——湍流的局部产生
- 批准号:
407316090 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Experimental, numerical and analytical investigation of droplet oscillation of a viscoelastic fluid
粘弹性流体液滴振荡的实验、数值和分析研究
- 批准号:
330615302 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Non-Gaussianity, bounds on turbulent scaling parameter and conformal transformations - analyzing the Lundgrenand Hopf functional equation of turbulence using Lie symmetries
非高斯性、湍流标度参数和共形变换的界限 - 使用李对称性分析湍流的 Lundgrenand Hopf 函数方程
- 批准号:
385665358 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Direct numerical simulation of the droplet evaporation and combustion using a discontinuous Galerkin scheme
使用不连续伽辽金方案直接数值模拟液滴蒸发和燃烧
- 批准号:
352548003 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Asymptotic Suction Boundary Layer: Alternative Linear and Weakly Non-Modal Stability Modes - a New Route to Large-Scale Turbulent Structures
渐进吸力边界层:替代线性和弱非模态稳定模式 - 大规模湍流结构的新途径
- 批准号:
316376675 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Priority Programmes
Helical invariant flows: New conservation laws and their importance for 2 1/2D turbulence
螺旋不变流:新守恒定律及其对 2 1/2D 湍流的重要性
- 批准号:
270556741 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Simulation of the droplet evaporation and combustion and droplet impact on a solid surface using a discontinuous Galerkin scheme
使用不连续伽辽金方案模拟液滴蒸发和燃烧以及液滴对固体表面的影响
- 批准号:
212746421 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Discontinuous Galerkin methods for two-phase flows with soluble surfactants
用于可溶性表面活性剂两相流的不连续伽辽金方法
- 批准号:
166796982 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Priority Programmes
Theoretische, numerische und experimentelle Untersuchungen tropfenförmiger Fluidschichten auf elektrisch hochbelasteten Isolierstoffoberflächen
高电负载绝缘材料表面滴状流体层的理论、数值和实验研究
- 批准号:
138260376 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Geometrische Struktur kleinskaliger Turbulenz
小尺度湍流的几何结构
- 批准号:
46938306 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Scaling-Up plant based Nanocarriers for BIOpharmaceuticals (SUNBIO)
用于生物制药的植物纳米载体的放大(SUNBIO)
- 批准号:
EP/Z53304X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Place-based approaches to sustainable food supply chains: scaling socio-technical innovations as enablers for enhancing public sector food procurement
基于地方的可持续食品供应链方法:扩大社会技术创新作为加强公共部门食品采购的推动力
- 批准号:
ES/Z502807/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Scaling up plant-protein based coatings for food packaging
扩大用于食品包装的植物蛋白基涂料
- 批准号:
10109386 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Launchpad
Advancing Gender Equity by Scaling Systemic Change in Community College Computing Programs with Research-Based Resources and Communities of Practice
通过基于研究的资源和实践社区扩大社区大学计算项目的系统性变革,促进性别平等
- 批准号:
2329678 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
URBAN RETROFIT UK: Scaling up place-based adaptations to the built environment through planning and development systems
英国城市改造:通过规划和开发系统扩大对建筑环境的基于地点的适应
- 批准号:
ES/Z502728/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
SBIR Phase I: Optimization and scaling of ladder polymers for membrane-based gas separations
SBIR 第一阶段:用于膜基气体分离的梯形聚合物的优化和规模化
- 批准号:
2151444 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Scaling up a novel low-emission fungal fermentation-based production system to commercialise ultra-realistic meat whole-cuts alternatives
扩大基于真菌发酵的新型低排放生产系统,以实现超现实肉类全切替代品的商业化
- 批准号:
10076671 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Scaling Telehealth Models to Improve Co-morbid Diabetes and Hypertension in Immigrant Populations
扩大远程医疗模式以改善移民人群的糖尿病和高血压共病
- 批准号:
10680980 - 财政年份:2023
- 资助金额:
-- - 项目类别:
EAGER: Demonstration of Scaling Impact on Coalition Formation in Agent-based Simulation
EAGER:在基于代理的模拟中展示对联盟形成的规模影响
- 批准号:
2333570 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Scaling Experiential, Community-Engaged Learning using Micro-Role Based Curricula
使用基于微角色的课程扩展体验式社区参与学习
- 批准号:
2236055 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant