Mechanochemistry of advanced anode designs in Li-ion batteries

锂离子电池先进阳极设计的机械化学

基本信息

项目摘要

This proposal is a contribution toward improving the performance of Lithium-Ion Batteries (LIBs) by quantitative modeling based on fundamental principles of continuum physics. LIBs are important energy storage devices. They are required in various technological applications, such as portable electronics or for the powering of vehicles. The incorporation and removal of Li in the anode material during charging and discharging, which must be considered as a chemical reaction, is accompanied by a considerable increase in volume giving rise to a build-up of huge mechanical stresses and strains. These have an impact on the principal rechargeability of LIBs because they eventually block the reaction. Moreover, they might result in physical damage of the battery material. Of course, empirical measures have been taken in order to prevent this from happening, one based on choosing different designs of the to-be-charged silicon structure in terms of spheres, rods, honeycombs, etc., and the other consisting of turning to other host materials less brittle than Si. However, a thorough physically-based understanding of the mechano-chemically coupled process in terms of quantitative modeling is still at its infancy. Surely, there have been attempts at modeling the phenomenon. However, it is fair to say that joining the mechanical and thermochemical aspects has been accomplished on a rather phenomenological basis. In short: The corresponding theory was not built on solid ground by using fundamental thermodynamics principles. This is why we present this proposal. We shall, first, establish a consistent mechano-chemical theory. Second, this theory will be exploited analytically as well as numerically while being sure why and from where each term in the equations originates and how it contributes to the observed micromorphological changes in various anode materials of different structural design. Third, we shall compare and link our models to real custom-made experiments in order to improve its applicability not by adjusting coefficients but always by basing it on first principles. In the end we will possess a reliable tool to-be-used during the design process of future LIBs. Both research teams have many years of experience in these fields and complement each other both from the theoretical as well as from the experimental point-of-view. So far the Russian team has focused on, first, setting up thermodynamically consistent singular interface theories and, second, on applying them, for example, to the (qualitative) modeling of silicon oxidation. The German team contributes with expertise in, first, multi-component diffusion and phase-field modeling of the spinodal decomposition of eutectic tin-lead and silver copper solders, and, second, a strong experimentally as well as industrially based background to quantitative modeling in this field of continuum modeling.
这一建议是对基于连续介质物理基本原理的定量建模提高锂离子电池(LIBS)性能的贡献。锂离子电池是重要的储能设备。它们在各种技术应用中都是必需的,例如便携式电子产品或为车辆提供动力。在充电和放电过程中,锂在负极材料中的加入和去除必须被视为一种化学反应,伴随着体积的显著增加,导致巨大的机械应力和应变的积累。这些都会对LIBS的主要可充电性产生影响,因为它们最终会阻止反应。此外,它们还可能导致电池材料的物理损坏。当然,为了防止这种情况的发生,已经采取了经验措施,一种是基于选择球状、棒状、蜂窝状等不同设计的带电硅结构,另一种是转向比硅更脆的其他宿主材料。然而,就定量建模而言,对机械力-化学耦合过程的彻底的基于物理的理解仍处于初级阶段。当然,已经有人尝试对这种现象进行建模。然而,公平地说,机械和热化学方面的结合是在相当现象学的基础上完成的。简而言之:相应的理论并不是用热力学基本原理建立在坚实的基础上的。这就是我们提出这项建议的原因。首先,我们将建立一个一致的机械力化学理论。其次,这一理论将被解析和数值利用,同时确定方程中的每一项为什么和从哪里产生,以及它如何对观察到的不同结构设计的各种阳极材料的微观形态变化做出贡献。第三,我们将比较我们的模型并将其与真实的定制实验联系起来,以便提高其适用性,而不是通过调整系数,而是始终基于基本原理。最终我们将拥有一个可靠的工具,可以在未来的LIBS的设计过程中使用。两个研究小组在这些领域都有多年的经验,从理论和实验的角度来看都是相辅相成的。到目前为止,俄罗斯团队的重点是,第一,建立热力学上一致的奇异界面理论,第二,将它们应用于硅氧化的(定性)建模。首先,德国团队在锡铅和银铜共晶焊料的调幅分解的多组分扩散和相场建模方面具有专业知识,其次,在连续介质建模领域,具有强大的实验和工业基础的定量建模背景。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical and analytical studies of kinetics, equilibrium, and stability of the chemical reaction fronts in deformable solids
可变形固体中化学反应前沿的动力学、平衡和稳定性的数值和分析研究
  • DOI:
    10.14279/depositonce-11392
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. V. Morozov
  • 通讯作者:
    A. V. Morozov
STABILITY OF CHEMICAL REACTION FRONTS IN THE VICINITY OF A BLOCKING STATE
阻塞状态附近化学反应前沿的稳定性
  • DOI:
    10.15593/perm.mech/2019.3.06
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. V. Morozov;A. B. Freidin;W. H. Müller
  • 通讯作者:
    W. H. Müller
Si Nanopowder Based Anode Material for the Lithium Ion Battery Cell
用于锂离子电池的硅纳米粉基负极材料
  • DOI:
    10.4028/www.scientific.net/kem.822.230
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. V. Morozov;A. V. Semencha;A. B. Freidin;W. H. Müller;M Dronova
  • 通讯作者:
    M Dronova
Effect of pore shapes on the overall electrical conductivity of cathode material in Li-ion batteries
Modelling stress-affected chemical reactions in non-linear viscoelastic solids with application to lithiation reaction in spherical Si particles
  • DOI:
    10.1016/j.ijengsci.2018.03.007
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    M. Poluektov;A. Freidin;Ł. Figiel
  • 通讯作者:
    M. Poluektov;A. Freidin;Ł. Figiel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Wolfgang H. Müller其他文献

Professor Dr. Wolfgang H. Müller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Wolfgang H. Müller', 18)}}的其他基金

Anomalous energy transfer in crystalline materials from the viewpoints of discrete mechanics and continuum theory
从离散力学和连续介质理论的角度研究晶体材料中的反常能量传递
  • 批准号:
    405631704
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Größeneffektmodellierung mit der Strain-Gradient-Theorie und Bestimmung innerer Längenparameter in Silizium mittels Ramanspektroskopie
利用应变梯度理论进行尺寸效应建模并利用拉曼光谱测定硅中的内部长度参数
  • 批准号:
    211669585
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
A thermodynamically consistent tensorial framework for strain induced damage and its application to the modeling of metal forming processes
应变诱导损伤的热力学一致张量框架及其在金属成形过程建模中的应用
  • 批准号:
    183114468
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Thermomechanische Beschreibung der Interfaceausbildung an Aluminium Ultraschall (US)-Wedge/Wedge-Drahtbondkontakten
铝超声波 (US) 楔形/楔形引线键合触点上界面形成的热机械描述
  • 批准号:
    172148679
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Pressure coring, in-situ cores, core transfer under pressure
压力取芯、原位取芯、压力下取芯
  • 批准号:
    86484364
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Infrastructure Priority Programmes
Compact Multipurpose Sub-Sampling and Processing of In-Situ Cores
紧凑型多用途子采样和原位岩心处理
  • 批准号:
    49414804
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Infrastructure Priority Programmes
Contamination controlled sub sampling of pressurised cores from IODP Leg 311, Cascadia hydrates
卡斯卡迪亚水合物 IODP Leg 311 加压岩心的污染控制子取样
  • 批准号:
    17505841
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Infrastructure Priority Programmes
Development of fundamental approaches for controlling the microstructure of liquid crystal elastomers in 4D printing based on extended micropolar theory
基于扩展微极性理论开发4D打印中液晶弹性体微观结构控制的基本方法
  • 批准号:
    525235558
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
  • 批准号:
    61201232
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
LTE-Advanced中继网络关键技术研究
  • 批准号:
    61171096
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
隧道超前探测的三分量光纤地震加速度检波机理与应用研究
  • 批准号:
    51079080
  • 批准年份:
    2010
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
IMT-Advanced协作中继网络中的网络编码研究
  • 批准号:
    61040005
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
面向IMT-Advanced的移动组播关键技术研究
  • 批准号:
    61001071
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
  • 批准号:
    61001116
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
晚期糖基化终产物受体与视网膜母细胞瘤蛋白在前列腺癌细胞中的相互作用及意义
  • 批准号:
    30700835
  • 批准年份:
    2007
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

In-Touch: Implementation of a person-centered palliative care iNtervention To imprOve comfort, QUality of Life and social engagement of people with advanced dementia in Care Homes
In-Touch:实施以人为本的姑息治疗干预措施,以提高护理院中晚期痴呆症患者的舒适度、生活质量和社会参与度
  • 批准号:
    10102690
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Advanced AI and RobotIcS for autonomous task pErformance
先进的人工智能和机器人控制系统可实现自主任务执行
  • 批准号:
    10110390
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Advanced Modelling Platform with Moving Ventricular Walls for Increasing Speed to Market of Heart Pumps
具有移动心室壁的先进建模平台可加快心脏泵的上市速度
  • 批准号:
    10071797
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Advanced Aeroponics 2: Value engineering to unlock 3x ROI in horticulture
Advanced Aeroponics 2:价值工程可实现园艺领域 3 倍的投资回报率
  • 批准号:
    10089184
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
  • 批准号:
    10089539
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Biophilica - Analysis of bio-coatings as an alternative to PU-coatings for advanced product applications
Biophilica - 分析生物涂层作为先进产品应用的 PU 涂层的替代品
  • 批准号:
    10089592
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Advanced HR-ICP-MS facility for marine, Antarctic and environmental samples
用于海洋、南极和环境样品的先进 HR-ICP-MS 设施
  • 批准号:
    LE240100039
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Zwitterion-based electrolytes for advanced energy technologies
用于先进能源技术的两性离子电解质
  • 批准号:
    DP240101407
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Mem-Fast Membranes as Enablers for Future Biorefineries: from Fabrication to Advanced Separation Technologies
Mem-Fast 膜作为未来生物精炼的推动者:从制造到先进的分离技术
  • 批准号:
    EP/Y032004/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
  • 批准号:
    EP/Y036654/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了