FDE-based modal logics
基于 FDE 的模态逻辑
基本信息
- 批准号:389151720
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2017
- 资助国家:德国
- 起止时间:2016-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims at the development and investigation of certain nonclassical logical systems that differ from classical logic with respect to a number of fundamental properties. The study of nonclassical logics is motivated by demands coming from areas such as the foundations of mathematics, artificial intelligence, natural language semantics, and resolving paradoxes analyzed in philosophical logic. More specifically, the project pursues the investigation of modal logics that extend first-degree entailment logic, FDE, a basic formal system also known as Belnap-Dunn logic. The system FDE is a very prominent non-classical logic. It is a many-valued and paraconsistent system of relevance logic that has numerous applications, for example in computer science. Extensions of FDE by modal operators are of special interest because these operators come with various readings such as "it is necessary that", "it is possible that", "it is known that", "it is obligatory that" etc. Propositional FDE is characterized by certain four-valued truth tables which make use of semantical values that are best understood in terms of information provided by various sources concerning the semantic status of atomic statements: a statement may be told only to be true, it may be told only to be false, it may neither be told true nor false, or it may happen that the statement is both told true and told false. Various modal and non-modal extensions of the basic system FDE have been introduced and investigated. A particularly important one is O. Arieli and A. Avron's logic of logical bilattices. The starting point of the present project is the modal logic BK. It can be presented as a conservative extension of the smallest normal modal propositional logic K, but also as an extension of propositional FDE. Other modal extensions of FDE have been investigated, including a system called BN4 and, more recently, the modal bilattice logic MBL introduced by A. Jung and U. Rivieccio. In the latter system the semantics is more radically many-valued insofar as the accessibility relation between information states is four-valued as well. Recently, the formal relationships between the central systems BK, BN4 and MBL have been investigated and to a large extent clarified by S.P. Odintsov and H. Wansing. It turned out that the notion of definitional equivalence plays an important role for comparing these logics and that this notion calls for some adjustments due to the failure of a property called self-extensionality. This feature raises a number of philosophical and mathematical problems that will be tackled in close collaboration between two research teams in Bochum and Novosibirsk, combining expertise in philosophical and mathematical logic. The objectives of the project include the investigation of novel proof systems for the mentioned logics as well as proof-theoretic and algebraic studies of systems in the vicinity of BK, BN4 and MBL, including so-called non-normal modal logics.
该项目旨在开发和研究某些非经典逻辑系统,这些系统在一些基本属性方面不同于经典逻辑。非经典逻辑的研究是由来自数学基础,人工智能,自然语言语义学和解决哲学逻辑中分析的悖论等领域的需求推动的。更具体地说,该项目追求模态逻辑的研究,扩展了一级蕴涵逻辑,FDE,一个基本的形式系统,也被称为Belnap-Dunn逻辑。系统FDE是一个非常突出的非经典逻辑。它是一个多值和次协调的关联逻辑系统,有许多应用,例如在计算机科学中。通过模态操作符对FDE进行扩展是特别有趣的,因为这些操作符带有各种读数,例如“必须”,"可能”,“已知”,“这是强制性的,”等等。命题FDE的特点是某些四个-值真值表,其利用语义值,这些语义值根据由各种源提供的关于语义状态的信息而被最好地理解原子语句:一个陈述可以只被告知是真的,也可以只被告知是假的,既可以不被告知是真的也可以不被告知是假的,或者可能发生的是,这个陈述既被告知是真的又被告知是假的。各种模态和非模态扩展的基本系统FDE已被介绍和研究。一个特别重要的是O。Arieli和A.逻辑双格的逻辑。本项目的出发点是模态逻辑BK。它可以被表示为最小正规模态命题逻辑K的保守扩展,也可以被表示为命题FDE的扩展。FDE的其他模态扩展也被研究,包括一个称为BN 4的系统,以及最近由A. Jung和U.里维乔在后一种系统中,语义是更根本的多值的,因为信息状态之间的可访问性关系也是四值的。最近,S. P. Odintsov和H.万辛事实证明,定义等价的概念在比较这些逻辑中起着重要的作用,并且由于一个称为自延性的属性的失败,这个概念需要一些调整。这一特点提出了一些哲学和数学问题,将在波鸿和新西伯利亚的两个研究小组密切合作,结合哲学和数学逻辑的专业知识。该项目的目标包括研究上述逻辑的新证明系统,以及BK,BN 4和MBL附近系统的证明理论和代数研究,包括所谓的非正规模态逻辑。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Routley Star and Hyperintensionality
鲁特利星和超内涵性
- DOI:10.1007/s10992-020-09558-5
- 发表时间:2020
- 期刊:
- 影响因子:1.5
- 作者:Sergei P. Odintsov;Heinrich Wansing
- 通讯作者:Heinrich Wansing
PROOF SYSTEMS FOR VARIOUS FDE-BASED MODAL LOGICS
适用于各种基于 FDE 的模态逻辑的证明系统
- DOI:10.1017/s1755020319000261
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Sergey A. Drobyshevich;Heinrich Wansing
- 通讯作者:Heinrich Wansing
On Definability of Connectives and Modal Logics over FDE
论 FDE 上连接词和模态逻辑的可定义性
- DOI:10.12775/llp.2019.010
- 发表时间:2019
- 期刊:
- 影响因子:0.5
- 作者:Sergei P. Odintsov;Daniel Skurt;Heinrich Wansing
- 通讯作者:Heinrich Wansing
SIXTEEN _3 in Light of Routley Stars
鲁特利星光下的十六_3
- DOI:10.1007/978-3-662-59533-6_31
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Hitoshi Omori;Daniel Skurt
- 通讯作者:Daniel Skurt
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Heinrich Wansing其他文献
Professor Dr. Heinrich Wansing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Heinrich Wansing', 18)}}的其他基金
Doxastic Agency and Epistemic Responsibility
信念代理和认知责任
- 批准号:
269646665 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Generalized truth values, ordering relations defined on them, and the resulting lattice structures that give rise to various non-classical logics
广义真值、在其上定义的排序关系以及由此产生的产生各种非经典逻辑的晶格结构
- 批准号:
20375253 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Flexible fMRI-Compatible Neural Probes with Organic Semiconductor based Multi-modal Sensors for Closed Loop Neuromodulation
灵活的 fMRI 兼容神经探针,带有基于有机半导体的多模态传感器,用于闭环神经调节
- 批准号:
2336525 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Quantitative verification of software families based on coalgebraic modal logic and games
基于联代数模态逻辑和博弈的软件族定量验证
- 批准号:
EP/X019373/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
A scalable cloud-based framework for multi-modal mapping across single neuron omics, morphology and electrophysiology
一个可扩展的基于云的框架,用于跨单个神经元组学、形态学和电生理学的多模式映射
- 批准号:
10725550 - 财政年份:2023
- 资助金额:
-- - 项目类别:
AI enhanced lifetime-based mesoscopic in vivo imaging of tissue molecular heterogeneity
人工智能增强了基于寿命的组织分子异质性细观体内成像
- 批准号:
10585510 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Evaluating a multi-modal maternal infant perinatal outpatient delivery system: A randomized controlled trial (MOMI PODS RCT)
评估多模式母婴围产期门诊分娩系统:一项随机对照试验 (MOMI PODS RCT)
- 批准号:
10834413 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Evaluation of sensory weighting and balance control based on modal analysis during standing
基于模态分析的站立时感觉加权和平衡控制评估
- 批准号:
23K03731 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-modal 3D image-based analysis of hydrogen embrittlement behavior in Al-Zn-Mg alloy via local hydrogen accumulation
基于多模态 3D 图像的 Al-Zn-Mg 合金局部氢积累氢脆行为分析
- 批准号:
23K13564 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Developing and Evaluating Multi-Modal Clinical Diagnostic Reasoning Models for Automated Diagnosis Generation
开发和评估用于自动诊断生成的多模式临床诊断推理模型
- 批准号:
10724044 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Multi-task learning based post-disaster mapping via multi-modal remote sensing observations
基于多任务学习的多模态遥感观测灾后测绘
- 批准号:
23K13419 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Multi-modal, multi-parametric liver imaging for ultrasound-based stratification of patients with non-alcoholic fatty liver disease
多模式、多参数肝脏成像对非酒精性脂肪肝患者进行基于超声的分层
- 批准号:
478764 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants