Pricing in Combinatorial Exchanges

组合交易所的定价

基本信息

项目摘要

Combinatorial auctions have attracted substantial academic interest inthe recent years. Apart from their theoretical importance for market design, theyhave found application for the sale of spectrum licenses, in logistics, and in industrialprocurement. However, the theory focuses almost exclusively on single-sidedauctions. Many electronic market places nowadays can be organized as a combinatorialexchange, featuring multiple buyers and sellers who are allowed to submitpackage bids. Day-ahead electricity markets are a prime example of such markets,which are a lot less well understood. We plan to study dierent forms of pricingon combinatorial exchanges. In a rst work package, we analyze linear and anonymousprices as they are being used on day-ahead electricity markets. We want tounderstand the efficiency losses incurred by such prices in analytical models andnumerical experiments. In a second work package, we study non-linear and personalizedprices, when they are a competitive equilibrium, and when outcomes are inthe core. The core is a central solution concept in coalitional game theory, describinga stable solution for such markets. Unfortunately, such a core solution doesnot always exist in combinatorial exchanges. We want to study when the core ofthe auction is empty in numerical experiments based and characterize value functions,when this is the case. In addition, we want to consider budget constraints ofbuyers. Such constraints are important in the eld, but they can lead to signicantcomputational complexity as the allocation problem is not independent from thepricing problem anymore. We want to study the complexity of allocation and pricingproblems with budget constraints and propose effiective algorithms to computeprices in such markets. Our overall goal is the development of a pricing theory forcombinatorial exchanges.
近年来,组合拍卖引起了学术界的广泛兴趣。除了在理论上对市场设计的重要性外,它们还被应用于频谱许可证的销售、物流和工业采购。然而,该理论几乎完全集中在单边主义上。如今,许多电子市场可以组织成一个组合交易所,允许多个买家和卖家提交一揽子出价。日前电力市场是这类市场的一个主要例子,但人们对这类市场的了解要少得多。我们计划研究组合交易所的不同定价形式。在一个rst工作包中,我们分析了线性和匿名电力,因为他们正在使用的一天前的电力市场。我们希望通过分析模型和数值实验来了解这种价格所带来的效率损失。在第二个工作包中,我们研究了非线性和个性化的价格,当它们是竞争均衡时,当结果是核心时。核心是联盟博弈论中的中心解概念,描述了这种市场的稳定解。不幸的是,这样的核心解决方案并不总是存在于组合交易所。我们要研究的核心时,拍卖是空的数值实验的基础上和特征值函数,当这种情况下。此外,我们还要考虑买家的预算限制。这样的约束在该领域是重要的,但它们可以导致显着的计算复杂性,因为分配问题不再独立于定价问题。我们希望研究具有预算约束的分配和定价问题的复杂性,并提出有效的算法来计算此类市场中的价格。我们的总体目标是发展一个组合交易所的定价理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Martin Bichler其他文献

Professor Dr. Martin Bichler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Martin Bichler', 18)}}的其他基金

Customer-individual bundling and auction design in revenue management
收入管理中的客户个人捆绑和拍卖设计
  • 批准号:
    219671367
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Automatisierte Steuerungsmechanismen für virtualisierte Rechenzentren
虚拟化数据中心的自动化控制机制
  • 批准号:
    135926102
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ein Vergleich zentraler und dezentraler Kombinatorischer Auktionsverfahren
集中式和分散式组合拍卖程序的比较
  • 批准号:
    49987661
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Verfahren und Softwareplattformen zur Durchführung iterativer, mehrdimensionaler Auktionen
用于进行迭代、多维拍卖的程序和软件平台
  • 批准号:
    5440656
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Designing Non-Convex Markets (DNCM)
设计非凸市场 (DNCM)
  • 批准号:
    405445463
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Reinhart Koselleck Projects

相似海外基金

Combinatorial Biosynthetic Pathway Engineering
组合生物合成途径工程
  • 批准号:
    EP/X039587/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
  • 批准号:
    2340453
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
  • 批准号:
    2400200
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
  • 批准号:
    2349401
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
  • 批准号:
    2338641
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of high-performance SmFe12-based sintered magnets using a unique combinatorial approach
使用独特的组合方法开发高性能 SmFe12 基烧结磁体
  • 批准号:
    23K26368
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
  • 批准号:
    2348843
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
  • 批准号:
    2348525
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了